1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Network analyzer measurements of spin transfer torques in magnetic tunnel junctions
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/2/10.1063/1.4737017
1.
1. J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
http://dx.doi.org/10.1016/0304-8853(96)00062-5
2.
2. L. Berger, Phys. Rev. B 54, 9353 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.9353
3.
3. D. C. Ralph and M. D. Stiles, J. Magn. Magn. Mater. 320, 1190 (2008).
http://dx.doi.org/10.1016/j.jmmm.2007.12.019
4.
4. J. A. Katine and E. E. Fullerton, J. Magn. Magn. Mater. 320, 1217 (2008).
http://dx.doi.org/10.1016/j.jmmm.2007.12.013
5.
5. S. Petit, C. Baraduc, C. Thirion, U. Ebels, Y. Liu, M. Li, P. Wang, and B. Dieny, Phys. Rev. Lett. 98, 077203 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.077203
6.
6. S. Petit, N. de Mestier, C. Baraduc, C. Thirion, Y. Liu, M. Li, P. Wang, and B. Dieny, Phys. Rev. B 78, 184420 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.184420
7.
7. A. M. Deac, A. Fukushima, H. Kubota, H. Maehara, Y. Suzuki, S. Yuasa, Y. Nagamine, K. Tsunekawa, D. D. Djayaprawira, and N. Watanabe, Nat. Phys. 4, 803 (2008).
http://dx.doi.org/10.1038/nphys1036
8.
8. M. H. Jung, S. Park, C.-Y. You, and S. Yuasa, Phys. Rev. B 81, 134419 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.134419
9.
9. O. G. Heinonen, S. W. Stokes, and J. Y. Yi, Phys. Rev. Lett. 105, 066602 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.066602
10.
10. P. K. Muduli, O. G. Heinonen, and J. Akerman, Phys. Rev. B 83, 184410 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.184410
11.
11. J. C. Sankey, Y.-T. Cui, J. Z. Sun, J. C. Slonczewski, R. A. Buhrman, and D. C. Ralph, Nat. Phys. 4, 67 (2008).
http://dx.doi.org/10.1038/nphys783
12.
12. H. Kubota, A. Fukushima, K. Yakushiji, T. Nagahama, S. Yuasa, K. Ando, H. Maehara, Y. Nagamine, K. Tsunekawa, D. D. Djayaprawira, N. Watanabe, and Y. Suzuki, Nat. Phys. 4, 37 (2008).
http://dx.doi.org/10.1038/nphys784
13.
13. C. Wang, Y.-T. Cui, J. Z. Sun, J. A. Katine, R. A. Buhrman, and D. C. Ralph, Phys. Rev. B 79, 224416 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.224416
14.
14. Z. Li, S. Zhang, Z. Diao, Y. Ding, X. Tang, D. M. Apalkov, Z. Yang, K. Kawabata, and Y. Huai, Phys. Rev. Lett. 100, 246602 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.246602
15.
15. S.-C. Oh, S.-Y. Park, A. Manchon, M. Chshiev, J.-H. Han, H.-W. Lee, J.-E. Lee, K.-T. Nam, Y. Jo, Y.-C. Kong, B. Dieny, and K.-J. Lee, Nat. Phys. 5, 898 (2009).
http://dx.doi.org/10.1038/nphys1427
16.
16. T. Devolder, J.-V. Kim, C. Chappert, J. Hayakawa, K. Ito, H. Takahashi, S. Ikeda, and H. Ohno, J. Appl. Phys. 105, 113924 (2009).
http://dx.doi.org/10.1063/1.3143033
17.
17. S.-Y. Park, Y. Jo, and K.-J. Lee, Phys. Rev. B 84, 214417 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.214417
18.
18. C. Wang, Y.-T. Cui, J. A. Katine, R. A. Buhrman, and D. C. Ralph, Nat. Phys. 7, 496 (2011).
http://dx.doi.org/10.1038/nphys1928
19.
19. L. Xue, C. Wang, Y.-T. Cui, J. A. Katine, R. A. Buhrman, and D. C. Ralph, Appl. Phys. Lett. 99, 022505 (2011).
http://dx.doi.org/10.1063/1.3606550
20.
20. D. Houssameddine, S. H. Florez, J. A. Katine, J.-P. Michel, U. Ebels, D. Mauri, O. Ozatay, B. Delaet, B. Viala, L. Folks, B. D. Terris, and M.-C. Cyrille, Appl. Phys. Lett. 93, 022505 (2008).
http://dx.doi.org/10.1063/1.2956418
21.
21. J. C. Slonczewski and J. Z. Sun, J. Magn. Magn. Mater. 310, 169 (2007).
http://dx.doi.org/10.1016/j.jmmm.2006.10.507
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/2/10.1063/1.4737017
Loading
/content/aip/journal/apl/101/2/10.1063/1.4737017
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/2/10.1063/1.4737017
2012-07-13
2014-08-21

Abstract

We demonstrate a simple network-analyzer technique to make quantitative measurements of the bias dependence of spin torque in a magnetic tunnel junction. We apply a microwave current to exert an oscillating spin torque near the ferromagnetic resonance frequency of the tunnel junction’s free layer. This produces an oscillating resistance that, together with an applied direct current, generates a microwave signal that we measure with the network analyzer. An analysis of the resonant response yields the strength and direction of the spin torque at non-zero bias. We compare to measurements of the spin torque vector by time-domain spin-torque ferromagnetic resonance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/2/1.4737017.html;jsessionid=tq2krudkd58u.x-aip-live-03?itemId=/content/aip/journal/apl/101/2/10.1063/1.4737017&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Network analyzer measurements of spin transfer torques in magnetic tunnel junctions
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/2/10.1063/1.4737017
10.1063/1.4737017
SEARCH_EXPAND_ITEM