1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Network analyzer measurements of spin transfer torques in magnetic tunnel junctions
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/2/10.1063/1.4737017
1.
1. J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
http://dx.doi.org/10.1016/0304-8853(96)00062-5
2.
2. L. Berger, Phys. Rev. B 54, 9353 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.9353
3.
3. D. C. Ralph and M. D. Stiles, J. Magn. Magn. Mater. 320, 1190 (2008).
http://dx.doi.org/10.1016/j.jmmm.2007.12.019
4.
4. J. A. Katine and E. E. Fullerton, J. Magn. Magn. Mater. 320, 1217 (2008).
http://dx.doi.org/10.1016/j.jmmm.2007.12.013
5.
5. S. Petit, C. Baraduc, C. Thirion, U. Ebels, Y. Liu, M. Li, P. Wang, and B. Dieny, Phys. Rev. Lett. 98, 077203 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.077203
6.
6. S. Petit, N. de Mestier, C. Baraduc, C. Thirion, Y. Liu, M. Li, P. Wang, and B. Dieny, Phys. Rev. B 78, 184420 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.184420
7.
7. A. M. Deac, A. Fukushima, H. Kubota, H. Maehara, Y. Suzuki, S. Yuasa, Y. Nagamine, K. Tsunekawa, D. D. Djayaprawira, and N. Watanabe, Nat. Phys. 4, 803 (2008).
http://dx.doi.org/10.1038/nphys1036
8.
8. M. H. Jung, S. Park, C.-Y. You, and S. Yuasa, Phys. Rev. B 81, 134419 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.134419
9.
9. O. G. Heinonen, S. W. Stokes, and J. Y. Yi, Phys. Rev. Lett. 105, 066602 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.066602
10.
10. P. K. Muduli, O. G. Heinonen, and J. Akerman, Phys. Rev. B 83, 184410 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.184410
11.
11. J. C. Sankey, Y.-T. Cui, J. Z. Sun, J. C. Slonczewski, R. A. Buhrman, and D. C. Ralph, Nat. Phys. 4, 67 (2008).
http://dx.doi.org/10.1038/nphys783
12.
12. H. Kubota, A. Fukushima, K. Yakushiji, T. Nagahama, S. Yuasa, K. Ando, H. Maehara, Y. Nagamine, K. Tsunekawa, D. D. Djayaprawira, N. Watanabe, and Y. Suzuki, Nat. Phys. 4, 37 (2008).
http://dx.doi.org/10.1038/nphys784
13.
13. C. Wang, Y.-T. Cui, J. Z. Sun, J. A. Katine, R. A. Buhrman, and D. C. Ralph, Phys. Rev. B 79, 224416 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.224416
14.
14. Z. Li, S. Zhang, Z. Diao, Y. Ding, X. Tang, D. M. Apalkov, Z. Yang, K. Kawabata, and Y. Huai, Phys. Rev. Lett. 100, 246602 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.246602
15.
15. S.-C. Oh, S.-Y. Park, A. Manchon, M. Chshiev, J.-H. Han, H.-W. Lee, J.-E. Lee, K.-T. Nam, Y. Jo, Y.-C. Kong, B. Dieny, and K.-J. Lee, Nat. Phys. 5, 898 (2009).
http://dx.doi.org/10.1038/nphys1427
16.
16. T. Devolder, J.-V. Kim, C. Chappert, J. Hayakawa, K. Ito, H. Takahashi, S. Ikeda, and H. Ohno, J. Appl. Phys. 105, 113924 (2009).
http://dx.doi.org/10.1063/1.3143033
17.
17. S.-Y. Park, Y. Jo, and K.-J. Lee, Phys. Rev. B 84, 214417 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.214417
18.
18. C. Wang, Y.-T. Cui, J. A. Katine, R. A. Buhrman, and D. C. Ralph, Nat. Phys. 7, 496 (2011).
http://dx.doi.org/10.1038/nphys1928
19.
19. L. Xue, C. Wang, Y.-T. Cui, J. A. Katine, R. A. Buhrman, and D. C. Ralph, Appl. Phys. Lett. 99, 022505 (2011).
http://dx.doi.org/10.1063/1.3606550
20.
20. D. Houssameddine, S. H. Florez, J. A. Katine, J.-P. Michel, U. Ebels, D. Mauri, O. Ozatay, B. Delaet, B. Viala, L. Folks, B. D. Terris, and M.-C. Cyrille, Appl. Phys. Lett. 93, 022505 (2008).
http://dx.doi.org/10.1063/1.2956418
21.
21. J. C. Slonczewski and J. Z. Sun, J. Magn. Magn. Mater. 310, 169 (2007).
http://dx.doi.org/10.1016/j.jmmm.2006.10.507
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/2/10.1063/1.4737017
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The network analyzer circuit used in the measurement.

Image of FIG. 2.

Click to view

FIG. 2.

The measured (a) real part and (b) imaginary part of the reflection signal (S11) for IDC  = −0.4 mA and a magnetic field H = 200 Oe applied 70° from the exchange bias direction, giving  = 61°. The solid lines are a fit to Eq. (1). The dashed lines are the nonresonant backgrounds used in the fits.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Measured frequency dependence of the real part of S 11 for several values of magnetic field applied 70° from the exchange bias direction, with IDC  = −0.4 mA. The curves are offset by 0.01 vertically. (b) Measured frequency dependence of the real part of S 11 for several values of DC current, with H = 200 Oe applied 70° from the exchange bias direction. The curves are offset vertically by 0.01. (c) Bias dependence of the in-plane and perpendicular components of the torkance determined by fitting to the frequency dependence of Re(S 11) (red circles) and Im(S 11) (blue diamonds) at different values of the DC bias. These data correspond to H = 200 Oe applied 70° from the exchange bias direction, giving  = 61°. For comparison, we also show in gray the results on the same device from time-domain ST-FMR measurements (triangles: for H = 250 Oe applied 95° from the exchange bias direction giving  = 85°; squares: H = 200 Oe applied at 68° giving  = 64°). (d) Integrated in-plane and perpendicular components of the spin torque vector determined by integrating the network-analyzer data in (c), with representative error bars.

Loading

Article metrics loading...

/content/aip/journal/apl/101/2/10.1063/1.4737017
2012-07-13
2014-04-23

Abstract

We demonstrate a simple network-analyzer technique to make quantitative measurements of the bias dependence of spin torque in a magnetic tunnel junction. We apply a microwave current to exert an oscillating spin torque near the ferromagnetic resonance frequency of the tunnel junction’s free layer. This produces an oscillating resistance that, together with an applied direct current, generates a microwave signal that we measure with the network analyzer. An analysis of the resonant response yields the strength and direction of the spin torque at non-zero bias. We compare to measurements of the spin torque vector by time-domain spin-torque ferromagnetic resonance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/2/1.4737017.html;jsessionid=olloxjr9n8x3.x-aip-live-03?itemId=/content/aip/journal/apl/101/2/10.1063/1.4737017&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Network analyzer measurements of spin transfer torques in magnetic tunnel junctions
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/2/10.1063/1.4737017
10.1063/1.4737017
SEARCH_EXPAND_ITEM