1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Monolithic polymer microlens arrays with antireflective nanostructures
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/20/10.1063/1.4747717
1.
1. Z. D. Popovic, R. A. Sprague, and G. A. N. Connell, Appl. Opt. 27(7 ), 12811284 (1988).
http://dx.doi.org/10.1364/AO.27.001281
2.
2. R. Volkel, M. Eisner, and K. J. Weible, Microelectron. Eng. 67–68, 461472 (2003).
http://dx.doi.org/10.1016/S0167-9317(03)00102-3
3.
3. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S.-Y. Lin, W. Liu, and J. A. Smart, Nature Photon. 1(3 ), 176 (2007).
http://dx.doi.org/10.1038/nphoton.2007.26
4.
4. W. H. Miller, G. D. Bernard, and J. L. Allen, Science 162(3855 ), 760767 (1968).
http://dx.doi.org/10.1126/science.162.3855.760
5.
5. P. B. Clapham and M. C. Hutley, Nature 244(5414 ), 281282 (1973).
http://dx.doi.org/10.1038/244281a0
6.
6. P. Vukusic and J. R. Sambles, Nature 424(6950 ), 852855 (2003).
http://dx.doi.org/10.1038/nature01941
7.
7. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, Proc. R. Soc. London, Ser. B 273(1587 ), 661667 (2006).
http://dx.doi.org/10.1098/rspb.2005.3369
8.
8. A. R. Parker and H. E. Townley, Nat. Nanotechnol. 2(6 ), 347353 (2007).
http://dx.doi.org/10.1038/nnano.2007.152
9.
9. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, Nat. Nanotechnol. 2(12 ), 770774 (2007).
http://dx.doi.org/10.1038/nnano.2007.389
10.
10. Y.-M. Chang, J. Shieh, and J.-Y. Juang, J. Phys. Chem. C 115(18 ), 89838987 (2011).
http://dx.doi.org/10.1021/jp201973y
11.
11. S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, and J. G. Rivas, Adv. Mater. 21(9 ), 973978 (2009).
http://dx.doi.org/10.1002/adma.200802767
12.
12. Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, Appl. Phys. Lett. 97(9 ), 093110 (2010).
http://dx.doi.org/10.1063/1.3488001
13.
13. W. L. Min, B. Jiang, and P. Jiang, Adv. Mater. 20(20 ), 39143918 (2008).
http://dx.doi.org/10.1002/adma.200800791
14.
14. Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Z. Sun, L. Zhang, H. Li, W. Xu, and B. Yang, Adv. Mater. 21(46 ), 47314734 (2009).
http://dx.doi.org/10.1002/adma.200901335
15.
15. K. Choi, S. H. Park, Y. M. Song, Y. T. Lee, C. K. Hwangbo, H. Yang, and H. S. Lee, Adv. Mater. 22(33 ), 37133718 (2010).
http://dx.doi.org/10.1002/adma.201001678
16.
16. T. Yanagishita, K. Nishio, and H. Masuda, Appl. Phys. Express 2(2 ), 022001 (2009).
http://dx.doi.org/10.1143/APEX.2.022001
17.
17. B. Päivänranta, P.-Y. Baroni, T. Scharf, W. Nakagawa, M. Kuittinen, and H. P. Herzig, Microelectron. Eng. 85(5–6 ), 10891091 (2008).
http://dx.doi.org/10.1016/j.mee.2008.01.011
18.
18. A. Mizutani, S. Takahira, and H. Kikuta, Appl. Opt. 49(32 ), 62686275 (2010).
http://dx.doi.org/10.1364/AO.49.006268
19.
19. C. T. Campbell, Surf. Sci. Rep. 27(1–3 ), 1111 (1997).
http://dx.doi.org/10.1016/S0167-5729(96)00011-8
20.
20. N. Nordman and O. Nordman, Opt. Eng. 40(11 ), 25722576 (2001).
http://dx.doi.org/10.1117/1.1411976
21.
21. R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, Nat. Methods 6(7 ), 511 (2009).
http://dx.doi.org/10.1038/nmeth.1339
22.
22. K. Tvingstedt, S. Dal Zilio, O. Ingan, and M. Tormen, Opt. Express 16(26 ), 21608 (2008).
http://dx.doi.org/10.1364/OE.16.021608
23.
23. M. H. Wu and G. M. Whitesides, Adv. Mater. 14(20 ), 1502 (2002).
http://dx.doi.org/10.1002/1521-4095(20021016)14:20<1502::AID-ADMA1502>3.0.CO;2-M
24.
24.See supplementary material at http://dx.doi.org/10.1063/1.4747717 for the absorption coefficient of AZ-1512 and the measured transmittance of MLAs. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/20/10.1063/1.4747717
Loading
/content/aip/journal/apl/101/20/10.1063/1.4747717
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/20/10.1063/1.4747717
2012-11-12
2014-09-17

Abstract

This work reports a novel method for fabricating monolithic polymer microlens arrays with antireflective nanostructures (AR-MLAs) at wafer level. The antireflective nanostructures (ARS) were fabricated by etching the curved surface of polymer microlens with a metal annealed nanoisland mask. The effective refractive index of ARS was controlled with the etch profile of nanostructures to reduce the mismatch in refractive indices at air-lens interface. The reflectance of AR-MLAs decreases below 4% from 490 nm to 630 nm in wavelength. The lens transmission significantly increases by 67% across the visible spectrum by minimizing the reflection and absorption, compared to that of MLAs without ARS.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/20/1.4747717.html;jsessionid=3lx86tuxh9djp.x-aip-live-03?itemId=/content/aip/journal/apl/101/20/10.1063/1.4747717&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Monolithic polymer microlens arrays with antireflective nanostructures
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/20/10.1063/1.4747717
10.1063/1.4747717
SEARCH_EXPAND_ITEM