1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Ultrafast laser orthogonal alignment and patterning of carbon nanotube-polymer composite films
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/20/10.1063/1.4766926
1.
1. A. A. Mamedov, N. A. Kotov, M. Prato, D. M. Guldi, J. P. Wicksted, and A. Hirsch, Nat. Mater. 1, 190 (2002).
http://dx.doi.org/10.1038/nmat747
2.
2. F. Rivadulla, C. Mateo-Mateo, and M. A. Correa-Duarte, J. Am. Chem. Soc. 132, 3751 (2010).
http://dx.doi.org/10.1021/ja910572b
3.
3. T. M. Barnes, J. D. Bergeson, R. C. Tenent, B. A. Larsen, G. Teeter, K. M. Jones, J. L. Blackburn, and J. Lagemaat, Appl. Phys. Lett. 96, 243309 (2010).
http://dx.doi.org/10.1063/1.3453445
4.
4. M. W. Rowell, M. A. Topinka, M. D. McGehee, H. Prall, G. Dennler, N. S. Sariciftci, L. Hu, and G. Gruner, Appl. Phys. Lett. 88, 233506 (2006).
http://dx.doi.org/10.1063/1.2209887
5.
5. B. S. Shim, Z. Tang, M. P. Morabito, A. Agarwal, H. Hong, and N. A. Kotov, Chem. Mater. 19, 5467 (2007).
http://dx.doi.org/10.1021/cm070442a
6.
6. Y. Bai, S. Ho, and N. A. Kotov, Nanoscale 4, 4393 (2012).
http://dx.doi.org/10.1039/c2nr30197k
7.
7. E. Jan, F. N. Pereira, D. L. Turner, and N. A. Kotov, J. Mater. Chem. 21, 1109 (2011).
http://dx.doi.org/10.1039/c0jm01895c
8.
8. M. K. Gheith, V. A. Sinani, J. P. Wicksted, R. L. Matts, and N. A. Kotov, Adv. Mater. 17, 2663 (2005).
http://dx.doi.org/10.1002/adma.200500366
9.
9. N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini, Adv. Mater. 21, 3970 (2009).
http://dx.doi.org/10.1002/adma.200801984
10.
10. S. B. Sinnott and R. Andrews, Crit. Rev. Solid State Mater. Sci. 26, 145 (2001).
http://dx.doi.org/10.1080/20014091104189
11.
11. C. Orofeo, H. Ago, N. Yoshihara, and M. Tsuji, Appl. Phys. Lett. 94, 053113 (2009).
http://dx.doi.org/10.1063/1.3078280
12.
12. Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, and H. Dai, Appl. Phys. Lett. 79, 3155 (2001).
http://dx.doi.org/10.1063/1.1415412
13.
13. B. S. Shim and N. A. Kotov, Langmuir 21, 9381 (2005).
http://dx.doi.org/10.1021/la050992s
14.
14. C. Kocabas, M. A. Meitl, A. Gaur, M. Shim, and J. A. Rogers, Nano Lett. 4, 2421 (2004).
http://dx.doi.org/10.1021/nl048487n
15.
15. H. Ago, K. Petritsch, M. S. P. Shaffer, A. H. Windle, and R. H. Friend, Adv. Mater. 11, 1281 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4095(199910)11:15<1281::AID-ADMA1281>3.0.CO;2-6
16.
16. J. F. Whitacre, R. D. Murphy, A. Marrie, and S. M. Yalisove, Electrochem. Commun. 11, 655 (2009).
http://dx.doi.org/10.1016/j.elecom.2009.01.005
17.
17. S. X. Guo and A. Ben-Yakar, J. Phys. D: Appl. Phys. 41, 185306 (2008).
http://dx.doi.org/10.1088/0022-3727/41/18/185306
18.
18. C. Kramberger, A. Waske, K. Biedermann, T. Pichler, T. Gemming, B. Büchner, and H. Kataura, Chem. Phys. Lett. 407, 254 (2005).
http://dx.doi.org/10.1016/j.cplett.2005.03.089
19.
19. A. H. Romero, M. E. Garcia, F. Valencia, H. Terrones, M. Terrones, and H. O. Jeschke, Nano Lett. 5, 1361 (2005).
http://dx.doi.org/10.1021/nl050626t
20.
20. M. Mahjouri-Samani, Y. S. Zhou, W. Xiong, Y. Gao, M. Mitchell, and Y. F. Lu, Nanotechnology 20, 495202 (2009).
http://dx.doi.org/10.1088/0957-4484/20/49/495202
21.
21. J. P. McDonald, V. R. Mistry, K. E. Ray, S. M. Yalisove, J. A. Nees, and N. R. Moody, Appl. Phys. Lett. 88, 153121 (2006).
http://dx.doi.org/10.1063/1.2193777
22.
22. J. P. McDonald, J. L. Hendricks, V. R. Mistry, D. C. Martin, and S. M. Yalisove, J. Appl. Phys. 102, 013107 (2007).
http://dx.doi.org/10.1063/1.2752137
23.
23. J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, Appl. Phys. Lett. 88, 183113 (2006).
http://dx.doi.org/10.1063/1.2201620
24.
24. A. Borowiec and H. K. Haugen, Appl. Phys. A 79, 521 (2004).
http://dx.doi.org/10.1007/s00339-003-2377-0
25.
25. J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
http://dx.doi.org/10.1007/s003390100893
26.
26. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, Phys. Rev. Lett. 81, 224 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.224
27.
27. D. A. Reis, K. J. Gaffney, G. H. Gilmer, and B. Torralva, MRS Bull. 31, 601 (2006).
http://dx.doi.org/10.1557/mrs2006.156
28.
28. M. Kandyla, T. Shih, and E. Mazur, Phys. Rev. B 75, 214107 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.214107
29.
29. E. Leveugle, D. S. Ivanov, and L. V. Zhigilei, Appl. Phys. A 79, 1643 (2004).
http://dx.doi.org/10.1007/s00339-004-2682-2
30.
30. T. Dumitrica, M. E. Garcia, H. O. Jeschke, and B. I. Yakobson, Phys. Rev. B 74, 193406 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.193406
31.
31. H. Jiang, B. Liu, Y. Huang, and K. C. Hwang, J. Eng. Mater. Technol. 126, 265 (2004).
http://dx.doi.org/10.1115/1.1752925
32.
32. C. Li and T. Chou, Phys. Rev. B 71, 235414 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.235414
33.
33. Y. Murakami, E. Einarsson, T. Edamura, and S. Maruyama, Carbon 43, 2664 (2005).
http://dx.doi.org/10.1016/j.carbon.2005.05.036
34.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/20/10.1063/1.4766926
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

SEM image of the direct-write large scale patterning of a 30 layer CNT-polymer composite film on a glass substrate irradiated with varying laser fluences above the damage threshold of the film. Each row is patterned using a different fluence (increasing fluence from top to bottom), and each circular damage region is formed using a single pulse.

Image of FIG. 2.

Click to view

FIG. 2.

(a) SEM image of a single laser pulse damage area of a 30 layer CNT-polymer composite film on a glass substrate irradiated at a fluence of 0.12 J/cm2. (b) Inset from (a). Bundles of CNTs can be seen on multiples scales within the damage region. The XY- and Z-directions are indicated in (a).

Image of FIG. 3.

Click to view

FIG. 3.

(a) Irradiation of a composite film at the damage threshold. CNT structures are pointing towards higher fluence regions in the lower portion of the image. (b) Inset from (a). Two CNT bundles within the irradiated region crossing at low-contact angle.

Image of FIG. 4.

Click to view

FIG. 4.

UV-Vis transmittance measurements of a composite film before and after laser irradiation at a fluence of 0.12 J/cm2. The transmittance of 390 nm to 1100 nm wavelength light increased by an average of 18% after irradiation.

Image of FIG. 5.

Click to view

FIG. 5.

(a) A CNT network organized within the 2-D XY plane is shown, with CNTs in green resting on the gray substrate. (b) Straining of the network in the direction of the red arrows causes contact angles between the CNTs to decrease and the network begins to neck. Due to thermal expansion of the polymer, CNTs are aligned in both the XY- and Z-directions. (c) At higher fluences, further straining of the network within the necking region causes the film to fracture.

Loading

Article metrics loading...

/content/aip/journal/apl/101/20/10.1063/1.4766926
2012-11-13
2014-04-20

Abstract

Dual orthogonal alignment of carbon nanotubes (CNTs) within the plane and perpendicular to a substrate is essential for many applications but difficult to obtain. Here, we demonstrate that it is possible using a combination of layer-by-layer deposition and ultrafast laser irradiation. Single-wall CNT-polymer composites preferentially aligned within the plane are irradiated with ultrafast laser pulses. After irradiation with distinct fluences at ambient conditions, morphology is seen where CNTs are formed into bundled CNTs with some orthogonal alignment. A model is presented to account for thermal expansion of the polymer and the formation of CNT bundles.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/20/1.4766926.html;jsessionid=bs38rjhom7c2d.x-aip-live-01?itemId=/content/aip/journal/apl/101/20/10.1063/1.4766926&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ultrafast laser orthogonal alignment and patterning of carbon nanotube-polymer composite films
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/20/10.1063/1.4766926
10.1063/1.4766926
SEARCH_EXPAND_ITEM