NOTICE: Scitation Maintenance Tuesday, May 5, 2015

Scitation will be unavailable on Tuesday, May 5, 2015 between 3:00 AM and 4:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. A. Mamedov, N. A. Kotov, M. Prato, D. M. Guldi, J. P. Wicksted, and A. Hirsch, Nat. Mater. 1, 190 (2002).
2. F. Rivadulla, C. Mateo-Mateo, and M. A. Correa-Duarte, J. Am. Chem. Soc. 132, 3751 (2010).
3. T. M. Barnes, J. D. Bergeson, R. C. Tenent, B. A. Larsen, G. Teeter, K. M. Jones, J. L. Blackburn, and J. Lagemaat, Appl. Phys. Lett. 96, 243309 (2010).
4. M. W. Rowell, M. A. Topinka, M. D. McGehee, H. Prall, G. Dennler, N. S. Sariciftci, L. Hu, and G. Gruner, Appl. Phys. Lett. 88, 233506 (2006).
5. B. S. Shim, Z. Tang, M. P. Morabito, A. Agarwal, H. Hong, and N. A. Kotov, Chem. Mater. 19, 5467 (2007).
6. Y. Bai, S. Ho, and N. A. Kotov, Nanoscale 4, 4393 (2012).
7. E. Jan, F. N. Pereira, D. L. Turner, and N. A. Kotov, J. Mater. Chem. 21, 1109 (2011).
8. M. K. Gheith, V. A. Sinani, J. P. Wicksted, R. L. Matts, and N. A. Kotov, Adv. Mater. 17, 2663 (2005).
9. N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini, Adv. Mater. 21, 3970 (2009).
10. S. B. Sinnott and R. Andrews, Crit. Rev. Solid State Mater. Sci. 26, 145 (2001).
11. C. Orofeo, H. Ago, N. Yoshihara, and M. Tsuji, Appl. Phys. Lett. 94, 053113 (2009).
12. Y. Zhang, A. Chang, J. Cao, Q. Wang, W. Kim, Y. Li, N. Morris, E. Yenilmez, J. Kong, and H. Dai, Appl. Phys. Lett. 79, 3155 (2001).
13. B. S. Shim and N. A. Kotov, Langmuir 21, 9381 (2005).
14. C. Kocabas, M. A. Meitl, A. Gaur, M. Shim, and J. A. Rogers, Nano Lett. 4, 2421 (2004).
15. H. Ago, K. Petritsch, M. S. P. Shaffer, A. H. Windle, and R. H. Friend, Adv. Mater. 11, 1281 (1999).<1281::AID-ADMA1281>3.0.CO;2-6
16. J. F. Whitacre, R. D. Murphy, A. Marrie, and S. M. Yalisove, Electrochem. Commun. 11, 655 (2009).
17. S. X. Guo and A. Ben-Yakar, J. Phys. D: Appl. Phys. 41, 185306 (2008).
18. C. Kramberger, A. Waske, K. Biedermann, T. Pichler, T. Gemming, B. Büchner, and H. Kataura, Chem. Phys. Lett. 407, 254 (2005).
19. A. H. Romero, M. E. Garcia, F. Valencia, H. Terrones, M. Terrones, and H. O. Jeschke, Nano Lett. 5, 1361 (2005).
20. M. Mahjouri-Samani, Y. S. Zhou, W. Xiong, Y. Gao, M. Mitchell, and Y. F. Lu, Nanotechnology 20, 495202 (2009).
21. J. P. McDonald, V. R. Mistry, K. E. Ray, S. M. Yalisove, J. A. Nees, and N. R. Moody, Appl. Phys. Lett. 88, 153121 (2006).
22. J. P. McDonald, J. L. Hendricks, V. R. Mistry, D. C. Martin, and S. M. Yalisove, J. Appl. Phys. 102, 013107 (2007).
23. J. P. McDonald, V. R. Mistry, K. E. Ray, and S. M. Yalisove, Appl. Phys. Lett. 88, 183113 (2006).
24. A. Borowiec and H. K. Haugen, Appl. Phys. A 79, 521 (2004).
25. J. Bonse, S. Baudach, J. Kruger, W. Kautek, and M. Lenzner, Appl. Phys. A 74, 19 (2002).
26. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, and S. I. Anisimov, Phys. Rev. Lett. 81, 224 (1998).
27. D. A. Reis, K. J. Gaffney, G. H. Gilmer, and B. Torralva, MRS Bull. 31, 601 (2006).
28. M. Kandyla, T. Shih, and E. Mazur, Phys. Rev. B 75, 214107 (2007).
29. E. Leveugle, D. S. Ivanov, and L. V. Zhigilei, Appl. Phys. A 79, 1643 (2004).
30. T. Dumitrica, M. E. Garcia, H. O. Jeschke, and B. I. Yakobson, Phys. Rev. B 74, 193406 (2006).
31. H. Jiang, B. Liu, Y. Huang, and K. C. Hwang, J. Eng. Mater. Technol. 126, 265 (2004).
32. C. Li and T. Chou, Phys. Rev. B 71, 235414 (2005).
33. Y. Murakami, E. Einarsson, T. Edamura, and S. Maruyama, Carbon 43, 2664 (2005).

Data & Media loading...


Article metrics loading...



Dual orthogonal alignment of carbon nanotubes (CNTs) within the plane and perpendicular to a substrate is essential for many applications but difficult to obtain. Here, we demonstrate that it is possible using a combination of layer-by-layer deposition and ultrafast laser irradiation. Single-wall CNT-polymer composites preferentially aligned within the plane are irradiated with ultrafast laser pulses. After irradiation with distinct fluences at ambient conditions, morphology is seen where CNTs are formed into bundled CNTs with some orthogonal alignment. A model is presented to account for thermal expansion of the polymer and the formation of CNT bundles.


Full text loading...

This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ultrafast laser orthogonal alignment and patterning of carbon nanotube-polymer composite films