1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Air-stable π-conjugated amorphous copolymer field-effect transistors with high mobility of 0.3 cm2/Vs
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/21/10.1063/1.4767921
1.
1. S. K. Park, T. N. Jackson, J. E. Anthony, and D. A. Mourey, Appl. Phys. Lett. 91, 063514 (2007).
http://dx.doi.org/10.1063/1.2768934
2.
2. I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. Macdonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M. L. Chabinyc, M. D. McGehee, and M. F. Toney, Nature Mater. 5, 328 (2006).
http://dx.doi.org/10.1038/nmat1612
3.
3. H. Sirringhaus, Proc. IEEE 97, 1570 (2009).
http://dx.doi.org/10.1109/JPROC.2009.2021680
4.
4. H. Sirringhaus, Adv. Mater. 17, 2411 (2005).
http://dx.doi.org/10.1002/adma.200501152
5.
5. H. Sirringhaus, M. Bird, T. Richards, and N. Zhao, Adv. Mater. 22, 3893 (2010).
http://dx.doi.org/10.1002/adma.200902857
6.
6. Z. He, K. Xiao, W. Durant, D. K. Hensley, J. E. Anthony, K. Hong, S. M. Kilbey II, J. Chen, and D. Li, Adv. Funct. Mater. 21, 3617 (2011).
http://dx.doi.org/10.1002/adfm.201002656
7.
7. M. Mas-Torrent, P. Hadley, S. T. Bromley, X. Ribas, J. Tarres, M. Mas, E. Molins, J. Veciana, and C. Rovira, J. Am. Chem. Soc. 126, 8546 (2004).
http://dx.doi.org/10.1021/ja048342i
8.
8. J. M. Verilhac, M. Benwadih, A. L. Seiler, S. Jacob, C. Brory, J. Bablet, M. Heitzman, J. Tallal, L. Barbut, P. Frere, G. Sicard, R. Gwoziecki, I. Chartier, R. Coppard, and C. Serbutoviez, Org. Electron. 11, 456 (2010).
http://dx.doi.org/10.1016/j.orgel.2009.11.027
9.
9. J. Veres, S. Ogier, and G. Lloyd, Chem. Mater. 16, 4543 (2004).
http://dx.doi.org/10.1021/cm049598q
10.
10. M. Hambsch, K. Reuter, M. Stanel, G. Schmidt, H. Kempa, U. Fugmann, U. Hahn, and A. C. Hubler, Mater. Sci. Eng., B 170, 93 (2010).
http://dx.doi.org/10.1016/j.mseb.2010.02.035
11.
11. J. Lee, S. Cho, and C. Yang. J. Mater. Chem. 21, 8528 (2011).
http://dx.doi.org/10.1039/c1jm11515d
12.
12. O. D. Jurchescu, J. Baas, and T. T. M. Palstra, Appl. Phys. Lett. 84, 3061 (2004).
http://dx.doi.org/10.1063/1.1704874
13.
13. H. Sirringhaus, Adv. Mater. 21, 3859 (2009).
http://dx.doi.org/10.1002/adma.200901136
14.
14. M. Uno, Y. Tominari, and J. Takeya, Org. Electron. 9, 753 (2008).
http://dx.doi.org/10.1016/j.orgel.2008.05.008
15.
15. R. Hamilton, J. Smith, S. Ogier, M. Heeney, J. E. Anthony, I. McCulloch, J. Veres, D. D. C. Bradley, and T. D. Anthopoulos, Adv. Mater. 21, 1166 (2009).
http://dx.doi.org/10.1002/adma.200801725
16.
16. D. M. De Leeuw, M. M. J. Simeon, A. R. Brown, and R. E. F. Einerhand, Synth. Met. 87, 53 (1997).
http://dx.doi.org/10.1016/S0379-6779(97)80097-5
17.
17. D. H. Kim, B. L. Lee, H. Moon, H. M. Kang, E. J. Jeong, J.-I. Park, K. M. Han, S. Lee, B. W. Yoo, B. W. Koo, J. Y. Kim, W. H. Lee, K. Cho, H. A. Becerril, and Z. Bao, J. Am. Chem. Soc. 131, 6124 (2009).
http://dx.doi.org/10.1021/ja8095569
18.
18. S. Georgakopoulos, D. Sparrowe, F. Meyer, and M. Shkunov, Appl. Phys. Lett. 97, 243507 (2010).
http://dx.doi.org/10.1063/1.3525933
19.
19. H. Kempa, K. Reuter, M. Bartzsch, U. Hahn, A. C. Huebler, D. Zielke, M. Forster, and U. Scherf, in IEEE Polytronic Conference, Wroclaw, Poland (2005).
20.
20. N. Schulte, R. Scheurich, and J. Pan, patent DE102006038683A1, Germany (2008).
21.
21. D. E. Eastman, Phys. Rev. B 2, 1 (1970).
http://dx.doi.org/10.1103/PhysRevB.2.1
22.
22. T. J. Ha, D. Sparrowe, and A. Dodabalapur, Org. Electron. 12, 1846 (2011)
http://dx.doi.org/10.1016/j.orgel.2011.07.014
23.
23. H. Bassler, Phys. Status Solidi B 175, 15 (1993).
http://dx.doi.org/10.1002/pssb.2221750102
24.
24. H. Kim, N. Schulte, G. Zhou, K. Mullen, and F. Laquai, Adv. Mater. 23, 894 (2011).
http://dx.doi.org/10.1002/adma.201003797
25.
25. T. Kreouzis, D. Poplavskyy, S. M. Tuladhar, M. Campoy-Quiles, J. Nelson, A. J. Campbell, and D. D. C. Bradley, Phys. Rev. B 73, 235201 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.235201
26.
26. J. H. Worne, J. E. Anthony, and D. Natelson, Appl. Phys. Lett. 96, 053308 (2010).
http://dx.doi.org/10.1063/1.3309704
27.
27. J. D. Yuen, R. Menon, N. E. Coates, E. B. Namdas, S. Cho, S. T. Hannahs, D. Moses, and A. J. Heeger, Nature Mater. 8, 572 (2009).
http://dx.doi.org/10.1038/nmat2470
28.
28. S. F. Nelson, Y.-Y. Lin, D. J. Gundlach, and T. N. Jackson, Appl. Phys. Lett. 72, 1854 (1998).
http://dx.doi.org/10.1063/1.121205
29.
29. J. Veres, S. D. Ogier, S. W. Leeming, D. C. Cupertino, and S. Mohialdin Khaffaf, Adv. Funct. Mater. 13, 199 (2003).
http://dx.doi.org/10.1002/adfm.200390030
30.
30. D. Hertel and H. Bassler, ChemPhysChem. 9, 666 (2008).
http://dx.doi.org/10.1002/cphc.200700575
31.
31. R. U. A. Khan, D. Poplavskyy, T. Kreouzis, and D. D. C. Bradley, Phys. Rev. B 75, 035215 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035215
32.
32. A. J. Mozer, N. S. Sariciftci, A. Pivrikas, R. Osterbacka, G. Juska, L. Brassat, and H. Bassler, Phys. Rev. B 71, 035214 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.035214
33.
33. A. R. Inigo, H. C. Chiu, W. Fann, Y. S. Huang, U. S. Jeng, T. L. Lin, C. H. Hsu, K. Y. Peng, and S. A. Chen, Phys. Rev. B 69, 075201 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.075201
34.
34. P. M. Borsenberger, J. Appl. Phys. 68, 5188 (1990).
http://dx.doi.org/10.1063/1.347060
35.
35. J. L. Bredas, J. P. Calbert, D. A. da Silva Filho, and J. Cornil, Proc. Natl. Acad. Sci. U.S.A. 99, 5804 (2002).
http://dx.doi.org/10.1073/pnas.092143399
36.
36. S. Athanasopoulos, J. Kirkpatrick, D. Martinez, J. M. Frost, C. M. Foden, A. B. Walker, and J. Nelson. Nano Lett. 7, 1785 (2007).
http://dx.doi.org/10.1021/nl0708718
37.
37. A. Kumar, M. A. Baklar, K. Scott, T. Kreouzis, and N. Stingelin-Stutzmann, Adv. Mater. 21, 4447 (2009).
http://dx.doi.org/10.1002/adma.200900717
38.
38. J. Liu, R. Zhang, G. Sauve, T. Kowalewski, and R. D. McCullough, J. Am. Chem. Soc. 130, 13167 (2008).
http://dx.doi.org/10.1021/ja803077v
39.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/21/10.1063/1.4767921
Loading
/content/aip/journal/apl/101/21/10.1063/1.4767921
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/21/10.1063/1.4767921
2012-11-20
2014-07-30

Abstract

We have fabricated organic bottom-contact top-gate field-effect transistors with an indenofluorene-phenanthrene co-polymer semiconductor, exhibiting ON/OFF ratio of 107 and uncommonly high mobility for an amorphous conjugated polymer of up to 0.3 cm2/Vs. Lack of crystallinity in this material is indicated by atomic force microscopy, grazing incidence wide angle X-ray scattering, and differential scanning calorimetry data. Nevertheless, fitting transistor data to the Gaussian disorder model gives low energetic disorder of σ = 48 meV and high prefactor mobility μ = 0.67 cm2/Vs. The measured transistor mobility is also exceptionally stable in ambient conditions, decreasing only by approximately 15% over two months.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/21/1.4767921.html;jsessionid=102nuapr0krds.x-aip-live-06?itemId=/content/aip/journal/apl/101/21/10.1063/1.4767921&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Air-stable π-conjugated amorphous copolymer field-effect transistors with high mobility of 0.3 cm2/Vs
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/21/10.1063/1.4767921
10.1063/1.4767921
SEARCH_EXPAND_ITEM