NOTICE: Scitation Maintenance Tuesday, May 5, 2015

Scitation will be unavailable on Tuesday, May 5, 2015 between 3:00 AM and 4:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. S. K. Park, T. N. Jackson, J. E. Anthony, and D. A. Mourey, Appl. Phys. Lett. 91, 063514 (2007).
2. I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. Macdonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M. L. Chabinyc, M. D. McGehee, and M. F. Toney, Nature Mater. 5, 328 (2006).
3. H. Sirringhaus, Proc. IEEE 97, 1570 (2009).
4. H. Sirringhaus, Adv. Mater. 17, 2411 (2005).
5. H. Sirringhaus, M. Bird, T. Richards, and N. Zhao, Adv. Mater. 22, 3893 (2010).
6. Z. He, K. Xiao, W. Durant, D. K. Hensley, J. E. Anthony, K. Hong, S. M. Kilbey II, J. Chen, and D. Li, Adv. Funct. Mater. 21, 3617 (2011).
7. M. Mas-Torrent, P. Hadley, S. T. Bromley, X. Ribas, J. Tarres, M. Mas, E. Molins, J. Veciana, and C. Rovira, J. Am. Chem. Soc. 126, 8546 (2004).
8. J. M. Verilhac, M. Benwadih, A. L. Seiler, S. Jacob, C. Brory, J. Bablet, M. Heitzman, J. Tallal, L. Barbut, P. Frere, G. Sicard, R. Gwoziecki, I. Chartier, R. Coppard, and C. Serbutoviez, Org. Electron. 11, 456 (2010).
9. J. Veres, S. Ogier, and G. Lloyd, Chem. Mater. 16, 4543 (2004).
10. M. Hambsch, K. Reuter, M. Stanel, G. Schmidt, H. Kempa, U. Fugmann, U. Hahn, and A. C. Hubler, Mater. Sci. Eng., B 170, 93 (2010).
11. J. Lee, S. Cho, and C. Yang. J. Mater. Chem. 21, 8528 (2011).
12. O. D. Jurchescu, J. Baas, and T. T. M. Palstra, Appl. Phys. Lett. 84, 3061 (2004).
13. H. Sirringhaus, Adv. Mater. 21, 3859 (2009).
14. M. Uno, Y. Tominari, and J. Takeya, Org. Electron. 9, 753 (2008).
15. R. Hamilton, J. Smith, S. Ogier, M. Heeney, J. E. Anthony, I. McCulloch, J. Veres, D. D. C. Bradley, and T. D. Anthopoulos, Adv. Mater. 21, 1166 (2009).
16. D. M. De Leeuw, M. M. J. Simeon, A. R. Brown, and R. E. F. Einerhand, Synth. Met. 87, 53 (1997).
17. D. H. Kim, B. L. Lee, H. Moon, H. M. Kang, E. J. Jeong, J.-I. Park, K. M. Han, S. Lee, B. W. Yoo, B. W. Koo, J. Y. Kim, W. H. Lee, K. Cho, H. A. Becerril, and Z. Bao, J. Am. Chem. Soc. 131, 6124 (2009).
18. S. Georgakopoulos, D. Sparrowe, F. Meyer, and M. Shkunov, Appl. Phys. Lett. 97, 243507 (2010).
19. H. Kempa, K. Reuter, M. Bartzsch, U. Hahn, A. C. Huebler, D. Zielke, M. Forster, and U. Scherf, in IEEE Polytronic Conference, Wroclaw, Poland (2005).
20. N. Schulte, R. Scheurich, and J. Pan, patent DE102006038683A1, Germany (2008).
21. D. E. Eastman, Phys. Rev. B 2, 1 (1970).
22. T. J. Ha, D. Sparrowe, and A. Dodabalapur, Org. Electron. 12, 1846 (2011)
23. H. Bassler, Phys. Status Solidi B 175, 15 (1993).
24. H. Kim, N. Schulte, G. Zhou, K. Mullen, and F. Laquai, Adv. Mater. 23, 894 (2011).
25. T. Kreouzis, D. Poplavskyy, S. M. Tuladhar, M. Campoy-Quiles, J. Nelson, A. J. Campbell, and D. D. C. Bradley, Phys. Rev. B 73, 235201 (2006).
26. J. H. Worne, J. E. Anthony, and D. Natelson, Appl. Phys. Lett. 96, 053308 (2010).
27. J. D. Yuen, R. Menon, N. E. Coates, E. B. Namdas, S. Cho, S. T. Hannahs, D. Moses, and A. J. Heeger, Nature Mater. 8, 572 (2009).
28. S. F. Nelson, Y.-Y. Lin, D. J. Gundlach, and T. N. Jackson, Appl. Phys. Lett. 72, 1854 (1998).
29. J. Veres, S. D. Ogier, S. W. Leeming, D. C. Cupertino, and S. Mohialdin Khaffaf, Adv. Funct. Mater. 13, 199 (2003).
30. D. Hertel and H. Bassler, ChemPhysChem. 9, 666 (2008).
31. R. U. A. Khan, D. Poplavskyy, T. Kreouzis, and D. D. C. Bradley, Phys. Rev. B 75, 035215 (2007).
32. A. J. Mozer, N. S. Sariciftci, A. Pivrikas, R. Osterbacka, G. Juska, L. Brassat, and H. Bassler, Phys. Rev. B 71, 035214 (2005).
33. A. R. Inigo, H. C. Chiu, W. Fann, Y. S. Huang, U. S. Jeng, T. L. Lin, C. H. Hsu, K. Y. Peng, and S. A. Chen, Phys. Rev. B 69, 075201 (2004).
34. P. M. Borsenberger, J. Appl. Phys. 68, 5188 (1990).
35. J. L. Bredas, J. P. Calbert, D. A. da Silva Filho, and J. Cornil, Proc. Natl. Acad. Sci. U.S.A. 99, 5804 (2002).
36. S. Athanasopoulos, J. Kirkpatrick, D. Martinez, J. M. Frost, C. M. Foden, A. B. Walker, and J. Nelson. Nano Lett. 7, 1785 (2007).
37. A. Kumar, M. A. Baklar, K. Scott, T. Kreouzis, and N. Stingelin-Stutzmann, Adv. Mater. 21, 4447 (2009).
38. J. Liu, R. Zhang, G. Sauve, T. Kowalewski, and R. D. McCullough, J. Am. Chem. Soc. 130, 13167 (2008).

Data & Media loading...


Article metrics loading...



We have fabricated organic bottom-contact top-gate field-effect transistors with an indenofluorene-phenanthrene co-polymer semiconductor, exhibiting ON/OFF ratio of 107 and uncommonly high mobility for an amorphous conjugated polymer of up to 0.3 cm2/Vs. Lack of crystallinity in this material is indicated by atomic force microscopy, grazing incidence wide angle X-ray scattering, and differential scanning calorimetry data. Nevertheless, fitting transistor data to the Gaussian disorder model gives low energetic disorder of σ = 48 meV and high prefactor mobility μ = 0.67 cm2/Vs. The measured transistor mobility is also exceptionally stable in ambient conditions, decreasing only by approximately 15% over two months.


Full text loading...

This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Air-stable π-conjugated amorphous copolymer field-effect transistors with high mobility of 0.3 cm2/Vs