1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Ultra-thin perfect absorber employing a tunable phase change material
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/22/10.1063/1.4767646
1.
1. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, New Jersey, 1984).
2.
2. R. H. Yan, R. J. Simes, and L. A. Coldren, IEEE Photon. Technol. Lett. 1, 273 (1989).
http://dx.doi.org/10.1109/68.43343
3.
3. A. Chin and T. Y. Chang, J. Vac. Sci. Technol. B. 8, 339 (1990).
http://dx.doi.org/10.1116/1.585066
4.
4. K. Kishino, M. S. Unlu, J.-I. Chyi, J. Reed, L. Arsenault, and H. Morkoc, IEEE J. Quantum Electron. 27, 2025 (1991).
http://dx.doi.org/10.1109/3.83412
5.
5. R. H. Yan, R. J. Simes, and L. A. Coldren, IEEE J. Quantum Electron. 27, 1922 (1991).
http://dx.doi.org/10.1109/3.83394
6.
6. K. K. Law, R. H. Yan, L. A. Coldren, and J. L. Merz, Appl. Phys. Lett. 57, 1345 (1990).
http://dx.doi.org/10.1063/1.103479
7.
7. J. R. Tischler, M. S. Bradley, and V. Bulovic, Opt. Lett. 31, 2045 (2006).
http://dx.doi.org/10.1364/OL.31.002045
8.
8. Y. D. Chong, L. Ge, H. Cao, and A. D. Stone, Phys. Rev. Lett. 105, 053901 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.053901
9.
9. W. Wan, Y. D. Chong, L. Ge, H. Noh, A. D. Stone, and H. Cao, Science 331, 889 (2011).
http://dx.doi.org/10.1126/science.1200735
10.
10. H. Noh, Y. Chong, A. D. Stone, and H. Cao, Phys. Rev. Lett. 108, 186805 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.186805
11.
11. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.207402
12.
12. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, Phys. Rev. B 78, 241103R (2008).
http://dx.doi.org/10.1103/PhysRevB.78.241103
13.
13. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, Appl. Phys. Lett. 96, 251104 (2010).
http://dx.doi.org/10.1063/1.3442904
14.
14. C. Wu, B. Neuner III, and G. Shvets, Phys. Rev. B 84, 075102 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075102
15.
15. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Nano Lett. 10, 2342 (2010).
http://dx.doi.org/10.1021/nl9041033
16.
16. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 2003).
17.
17. M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, Science 318, 1750 (2007).
http://dx.doi.org/10.1126/science.1150124
18.
18. H. S. Choi, J. S. Ahn, J. H. Jung, T. W. Noh, and D. H. Kim, Phys. Rev. B 54, 4621 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.4621
19.
19. Z. Yang, C. Ko, and S. Ramanathan, Annu. Rev. Mater. Res. 41, 337 (2011).
http://dx.doi.org/10.1146/annurev-matsci-062910-100347
20.
20. W. R. Roach and I. Balberg, Solid State Commun. 9, 551 (1971).
http://dx.doi.org/10.1016/0038-1098(71)90144-X
21.
21. D. Ruzmetov, K. T. Zawilski, S. D. Senanayake, V. Narayanamurti, and S. Ramanathan, J. Phys.: Condens. Matter 20, 465204 (2008).
http://dx.doi.org/10.1088/0953-8984/20/46/465204
22.
22. T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. D. Ventra, and D. N. Basov, Science 325, 1518 (2009).
http://dx.doi.org/10.1126/science.1176580
23.
23. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalker, J. Ma, and H. A. Atwater, Opt. Express 17, 18330 (2009).
http://dx.doi.org/10.1364/OE.17.018330
24.
24. M. Seo, J. Kyoung, H. Park, S. Koo, H. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H.-T. Kim, N. Park, Q.-H. Park, K. Ahn, and D. Kim, Nano Lett. 10, 2064 (2010).
http://dx.doi.org/10.1021/nl1002153
25.
25. F. Gervais and B. Piriou, J. Phys. C: Solid State Phys. 7, 2374 (1974).
http://dx.doi.org/10.1088/0022-3719/7/13/017
26.
26. E. D. Palik, Handbook of Optical Constants of Solids II (Elsevier Science, 1998).
27.
27. J. Nag and R. F. Haglund, J. Phys.: Condens. Matter 20, 264016 (2008).
http://dx.doi.org/10.1088/0953-8984/20/26/264016
28.
28. H. Bosman, Y. Y. Lau, and R. M. Gilgenbach, Appl. Phys. Lett. 82, 1353 (2003).
http://dx.doi.org/10.1063/1.1556969
29.
29. C. Hagglund, S. P. Apell, and B. Kasemo, Nano Lett. 10, 3135 (2010).
http://dx.doi.org/10.1021/nl101929j
30.
30. M. Pu, Q. Feng, M. Wang, C. Hu, C. Huang, X. Ma, Z. Zhao, C. Wang, and X. Luo, Opt. Express 20, 2246 (2012).
http://dx.doi.org/10.1364/OE.20.002246
31.
31. R. S. Scott and G. E. Fredericks, Infrared Phys. 16, 619 (1976).
http://dx.doi.org/10.1016/0020-0891(76)90098-1
32.
32. M. Gurvitch, S. Luryi, A. Polyakov, and A. Shabalov, J. Appl. Phys. 106, 104504 (2009).
http://dx.doi.org/10.1063/1.3243286
33.
33. C. Chen, X. Yi, X. Zhao, and B. Xiong, Sens. Actuators, A: Phys. 90, 212 (2001).
http://dx.doi.org/10.1016/S0924-4247(01)00495-2
34.
34. H. Miyazaki and I. Yasui, J. Phys. D 39, 2220 (2006).
http://dx.doi.org/10.1088/0022-3727/39/10/034
35.
35. M. Wuttig and N. Yamada, Nature Mater. 6, 824 (2007).
http://dx.doi.org/10.1038/nmat2009
36.
36. N. J. Harrick and A. F. Turner, Appl. Opt. 9, 2111 (1970).
http://dx.doi.org/10.1364/AO.9.002111
37.
37. M. Diem, T. Koschny, and C. M. Soukoulis, Phys. Rev. B 79, 033101 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.033101
38.
38. J. A. Mason, S. Smith, and D. Wasserman, Appl. Phys. Lett. 98, 241105 (2011).
http://dx.doi.org/10.1063/1.3600779
39.
39.See the supplementary material at http://dx.doi.org/10.1063/1.4767646 for details on the sample preparation and optical measurements, as well as some additional calculated and experimental optical spectra. [Supplementary Material]
40.
40. M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “ Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nature Mater. (published online).
http://dx.doi.org/10.1038/nmat3443
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/22/10.1063/1.4767646
Loading
/content/aip/journal/apl/101/22/10.1063/1.4767646
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/22/10.1063/1.4767646
2012-11-26
2014-07-22

Abstract

We show that perfect absorption can be achieved in a system comprising a single lossy dielectric layer of thickness much smaller than the incident wavelength on an opaque substrate by utilizing the nontrivial phase shifts at interfaces between lossy media. This design is implemented with an ultra-thin (∼λ/65) vanadium dioxide (VO2) layer on sapphire, temperature tuned in the vicinity of the VO2 insulator-to-metal phase transition, leading to 99.75% absorption at λ = 11.6 μm. The structural simplicity and large tuning range (from ∼80% to 0.25% in reflectivity) are promising for thermal emitters, modulators, and bolometers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/22/1.4767646.html;jsessionid=12fwgwn8e2wi2.x-aip-live-06?itemId=/content/aip/journal/apl/101/22/10.1063/1.4767646&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ultra-thin perfect absorber employing a tunable phase change material
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/22/10.1063/1.4767646
10.1063/1.4767646
SEARCH_EXPAND_ITEM