1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/22/10.1063/1.4768242
1.
1. I. D. W. Samuel and G. A. Turnbull, Chem. Rev. 107, 1272 (2007).
http://dx.doi.org/10.1021/cr050152i
2.
2. J. Clark and G. Lanzani, Nat. Photonics 4, 438 (2010).
http://dx.doi.org/10.1038/nphoton.2010.160
3.
3. F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. B. Pei, and A. J. Heeger, Science 273, 1833 (1996).
http://dx.doi.org/10.1126/science.273.5283.1833
4.
4. N. Tessler, G. J. Denton, and R. H. Friend, Nature 382, 695 (1996).
http://dx.doi.org/10.1038/382695a0
5.
5. G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, Appl. Phys. Lett. 83, 2118 (2003).
http://dx.doi.org/10.1063/1.1612903
6.
6. Y. Yang, G. A. Turnbull, and I. D. W. Samuel, Appl. Phys. Lett. 92, 163306 (2008).
http://dx.doi.org/10.1063/1.2912433
7.
7. M. Lu, S. S. Choi, C. J. Wagner, J. G. Eden, and B. T. Cunningham, Appl. Phys. Lett. 92, 261502 (2008).
http://dx.doi.org/10.1063/1.2913007
8.
8. M. B. Christiansen, J. M. Lopacinska, M. H. Jakobsen, N. A. Mortensen, M. Dufva, and A. Kristensen, Opt. Express 17, 2722 (2009).
http://dx.doi.org/10.1364/OE.17.002722
9.
9. G. Heliotis, S. A. Choulis, G. Itskos, R. Xia, R. Murray, P. N. Stavrinou, and D. D. C. Bradley, Appl. Phys. Lett. 88, 081104 (2006).
http://dx.doi.org/10.1063/1.2178197
10.
10. G. Heliotis, R. Xia, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, J. Appl. Phys. 96, 6959 (2004).
http://dx.doi.org/10.1063/1.1811374
11.
11. C. Karnutsch, C. Gürtner, V. Haug, U. Lemmer, T. Farrell, B. S. Nehls, U. Scherf, J. Wang, T. Weimann, G. Heliotis, C. Pflumm, J. C. deMello, and D. D. C. Bradley, Appl. Phys. Lett. 89, 201108 (2006).
http://dx.doi.org/10.1063/1.2390644
12.
12. R. Xia, W.-Y. Lai, P. A. Levermore, W. Huang, and D. D. C. Bradley, Adv. Funct. Mater. 19, 2844 (2009).
http://dx.doi.org/10.1002/adfm.200900503
13.
13. E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, R. Gómez, J. L. Segura, and M. A. Díaz-García, J. Phys. Chem. C 111, 13595 (2007).
http://dx.doi.org/10.1021/jp0725984
14.
14. M. H. Song, D. Kabra, B. Wenger, R. H. Friend, and H. J. Snaith, Adv. Funct. Mater. 19, 2130 (2009).
http://dx.doi.org/10.1002/adfm.200801833
15.
15. V. Navarro-Fuster, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, M. A. Díaz-García, V. Trabadelo, A. Juarros, A. Retolaza, and S. Merino, Appl. Phys. Lett. 97, 171104 (2010).
http://dx.doi.org/10.1063/1.3506500
16.
16. V. Navarro-Fuster, I. Vragovic, E. M. Calzado, P. G. Boj, J. A. Quintana, J. M. Villalvilla, A. Retolaza, A. Juarros, D. Otaduy, S. Merino, and M. A. Díaz-García, J. Appl. Phys. 112, 043104 (2012).
http://dx.doi.org/10.1063/1.4745047
17.
17. M. G. Ramirez, P. G. Boj, V. Navarro-Fuster, I. Vragovic, J. M. Villalvilla, I. Alonso, V. Trabadelo, S. Merino, and M. A. Díaz-García, Opt. Express 19, 22443 (2011).
http://dx.doi.org/10.1364/OE.19.022443
18.
18. H. Kogelnik and C. V. Shank, J. Appl. Phys. 43, 2327 (1972).
http://dx.doi.org/10.1063/1.1661499
19.
19. S. V. Frolov, Z. V. Vardeny, and K. Yoshino, Phys. Rev. B 57, 9141 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.9141
20.
20. K. N. Bourdakos, L. A. Cury, and A. P. Monkman, Org. Electron. 12, 1142 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.03.035
21.
21. M. M. Jorgensen, S. R. Petersen, M. B. Christiansen, T. Buss, C. L. C. Smith, and A. Kristensen, Appl. Phys. Lett. 96, 231115 (2010).
http://dx.doi.org/10.1063/1.3443718
22.
22. E. M. Calzado, J. M. Villalvilla, P. G. Boj, J. A. Quintana, P. A. Postigo, and M. A. Díaz-García, Appl. Opt. 49, 463470 (2010).
http://dx.doi.org/10.1364/AO.49.000463
23.
23. N. Tanaka, N. Barashkov, J. Heath, and W. N. Sisk, Appl. Opt. 45, 3846 (2006).
http://dx.doi.org/10.1364/AO.45.003846
24.
24. L. Cerdán, A. Costela, G. Durán-Sampedro, I. García-Moreno, M. Calle, M. Juan-y-Seva, J. de Abajo, and G. A. Turnbull, J. Mater. Chem. 22, 8938 (2012).
http://dx.doi.org/10.1039/c2jm16745j
25.
25. F. Schindler, J. M. Lupton, J. Feldmann, and U. Scherf, Adv. Mater. 16, 653 (2004).
http://dx.doi.org/10.1002/adma.200306291
26.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/22/10.1063/1.4768242
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Laser thresholds, expressed as energy per pulse, for DFB devices with two grating depths, , as a function of the excitation area over the sample.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Laser thresholds, expressed as energy density (right axis) and as power density (left axis), for DFB devices with two grating depths, , as a function of the excitation area; (b) sketch of the excitation geometry.

Image of FIG. 3.

Click to view

FIG. 3.

Normalized laser intensity versus irradiation time (bottom axis) andversus the number of pump pulses (10 ns, 10 Hz; top axis) for a DFB device with  = 400 nm, under excitation with areas below and above ∼ 1 × 10−3 cm2, at pump power densities two times above the corresponding thresholds (215 and 47 kW/cm2, respectively).

Loading

Article metrics loading...

/content/aip/journal/apl/101/22/10.1063/1.4768242
2012-11-27
2014-04-21

Abstract

It is shown that the optical pump power (or energy) density thresholds required to obtain lasing from organic second-order distributed feedback lasers, increase when the excitation area () is smaller than a certain value ( ). So, in order to obtain the minimum possible thresholds and to ensure that they constitute adequate quantities for comparison purposes, the condition  >  should be fulfilled. Results also indicate that when  <  ( ∼ 0.1 mm2 for the devices studied here), the operational device lifetime, which depends mainly on the pump power (or energy) density, becomes drastically reduced.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/22/1.4768242.html;jsessionid=3i3npmr426l2l.x-aip-live-02?itemId=/content/aip/journal/apl/101/22/10.1063/1.4768242&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Influence of the excitation area on the thresholds of organic second-order distributed feedback lasers
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/22/10.1063/1.4768242
10.1063/1.4768242
SEARCH_EXPAND_ITEM