1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Electron-state engineering of bilayer graphene by ionic molecules
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/23/10.1063/1.4769098
1.
1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2. X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nat. Nanotechnol. 3, 491 (2008).
http://dx.doi.org/10.1038/nnano.2008.199
3.
3. A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
4.
4. F. Schwierz, Nat. Nanotechnol. 5, 487 (2010).
http://dx.doi.org/10.1038/nnano.2010.89
5.
5. M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusukabe, J. Phys. Soc. Jpn. 65, 1920 (1996).
http://dx.doi.org/10.1143/JPSJ.65.1920
6.
6. M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.206805
7.
7. J. Bai, X. Zhong, S. Jiang, Y. Huang, and X. Duan, Nat. Nanotechnol. 5, 190 (2010).
http://dx.doi.org/10.1038/nnano.2010.8
8.
8. J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan, and E. S. Snow, Nano Lett. 10, 3001 (2010).
http://dx.doi.org/10.1021/nl101437p
9.
9. J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. K. Vandersypen, Nature Mater. 7, 151 (2008).
http://dx.doi.org/10.1038/nmat2082
10.
10. Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Nature Mater. 459, 820 (2009).
http://dx.doi.org/10.1038/nature08105
11.
11. H. Miyazaki, K. Tsukagoshi, A. Kanda, M. Otani, and S. Okada, Nano Lett. 10, 3888 (2010).
http://dx.doi.org/10.1021/nl1015365
12.
12. J. Park, S. B. Jo, Y.-J. Yu, Y. Kim, J. W. Yang, W. H. Lee, H. H. Kim, B. H. Hong, P. Kim, K. Cho, and K. S. Kim, Adv. Mater. 24, 407 (2012).
http://dx.doi.org/10.1002/adma.201103411
13.
13. D. L. Duong, S. M. Lee, S. H. Chae, Q. H. Ta, S. Y. Lee, G. H. Han, J. J. Bae, and Y. H. Lee, Phys. Rev. B 85, 205413 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.205413
14.
14. W. Zhang, C.-T. Lin, K.-K. Liu, T. Tite, C.-Y. Su, C.-H. Chang, Y.-H. Lee, C.-W. Chu, K.-H. Wei, J.-L. Kuo, and L.-J. Li, ACS Nano 5, 7517 (2011).
http://dx.doi.org/10.1021/nn202463g
15.
15. X. Tian, J. Xu, and X. Wang, J. Phys. Chem. B 114, 11377 (2010).
http://dx.doi.org/10.1021/jp102800v
16.
16. X. Wang, P. F. Fulvio, G. A. Baker, G. M. Veith, R. R. Unocic, S. M. Mahurin, M. Chi, and S. Dai, Chem. Commun. 46, 4487 (2010).
http://dx.doi.org/10.1039/c0cc00799d
17.
17. D. Nuvoli, L. Valentini, V. Alzari, S. Scognamillo, S. B. Bon, M. Piccinini, J. Illescas, and A. Mariani, J. Mater. Chem. 21, 3428 (2011).
http://dx.doi.org/10.1039/c0jm02461a
18.
18. Q. Ji, I. Honma, S.-M. Paek, M. Akada, J. P. Hill, A. Vinu, and K. Ariga, Angew. Chem., Int. Ed. 49, 9737 (2010).
http://dx.doi.org/10.1002/anie.201004929
19.
19. Y. Shim, Y. Jung, and H. J. Kim, J. Phys. Chem. C 115, 23574 (2011).
http://dx.doi.org/10.1021/jp203458b
20.
20. M. H. Ghatee and F. Moosavi, J. Phys. Chem. C 115, 5626 (2011).
http://dx.doi.org/10.1021/jp108537q
21.
21. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
22.
22. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
http://dx.doi.org/10.1103/PhysRev.140.A1133
23.
23. Y. Morikawa, H. Ishii, and K. Seki, Phys. Rev. B 69, 041403R (2004).
http://dx.doi.org/10.1103/PhysRevB.69.041403
24.
24. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.566
25.
25. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.5048
26.
26. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7892
27.
27. M. Otani and O. Sugino, Phys. Rev. B 73, 115407 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.115407
28.
28. I. Hamada, M. Otani, O. Sugino, and Y. Morikawa, Phys. Rev. B 80, 165411 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.165411
29.
29.Note that the density functional theory calculations usually underestimate the band-gap energy of semiconductors.
30.
30. M. Otani and S. Okada, J. Phys. Soc. Jpn. 79, 073701 (2010).
http://dx.doi.org/10.1143/JPSJ.79.073701
31.
31. N. T. Cuong, M. Otani, and S. Okada, Phys. Rev. Lett. 106, 106801 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.106801
32.
32. N. T. Cuong, M. Otani, Y. Iizumi, T. Okazaki, G. Rotas, N. Tagmatarchis, Y. Li, T. Kaneko, R. Hatakeyama, and S. Okada, Appl. Phys. Lett. 99, 053105 (2011).
http://dx.doi.org/10.1063/1.3619828
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/23/10.1063/1.4769098
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Structural models of bilayer graphene sandwiched by ionic molecules: (S1) tetrafluoroborate () anion/1-ethyl-1-methyl pyrrolidinum cation, (S2) tetrafluoroborate () anion/1-ethyl-pyridinium cation, and (S3) methylcarbonate () anion/1-ethyl-3-methyl imidazolium cation.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Electronic energy band of bilayer graphene sandwiched by tetrafluoroborate () anion and 1-ethyl-1-methyl pyrrolidinum cation (S1 structure). Energies are measured from that of the Fermi level. (b) Average electrostatic potential profile along the z-axis normal to the graphene layers.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Electronic energy band of bilayer graphene sandwiched by tetrafluoroborate () anion and 1-ethyl-pyridinium cation (S2structure). Energies are measured from that of the Fermi level. (b) Wavefunction distribution of LU and HO states of ionic molecules at the -point.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Electronic energy band of bilayer graphene sandwiched by methylcarbonate () anion and 1-ethyl-3-methyl imidazolium (S3 structure). Energies are measured from that of the Fermi level. (b) Wavefunction distribution of LU and HO states of ionic molecules at the -point.

Image of FIG. 5.

Click to view

FIG. 5.

(a) A structure model of all carbon p-n junction device, in which half of the upper/lower layers of graphene is covered by the tetrafluoroborate anion I/1-ethyl-pyridinium cation I, respectively, whereas the remaining area of the layers is covered by the methylcarbonate anion II/1-ethyl-3-methyl imidazolium cation II, respectively. (b) Diagram of energy bands of two separate p-type and n-type doping bilayer graphene semiconductors.

Loading

Article metrics loading...

/content/aip/journal/apl/101/23/10.1063/1.4769098
2012-12-04
2014-04-17

Abstract

Based on the first-principles total-energy calculations, we demonstrate the possibility of controlling the band-gap and carrier type of bilayer graphene using ionic molecules. Our calculations suggest that bilayer graphene sandwiched by a pair of cation-anion molecules is a semiconductor with a moderate energy gap of 0.26 eV that is attributable to the strong local dipole field induced by the cation-anion pair. Furthermore, we can control the semiconducting carrier type—intrinsic, p-type, or n-type—of bilayer graphene sandwiched by ionic molecules by changing the cation-anion pair.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/23/1.4769098.html;jsessionid=10zvyhz38at1.x-aip-live-01?itemId=/content/aip/journal/apl/101/23/10.1063/1.4769098&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electron-state engineering of bilayer graphene by ionic molecules
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/23/10.1063/1.4769098
10.1063/1.4769098
SEARCH_EXPAND_ITEM