1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
TiO2 nanofibrous interface development for Raman detection of environmental pollutants
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/23/10.1063/1.4769112
1.
1. A. V. Krishnan, P. Stathis, S. F. Permuth, L. Tokes, and D. Feldman, Endocrinology 132, 2279 (1993).
http://dx.doi.org/10.1210/en.132.6.2279
2.
2. S. Ye, S. Morita, G. Li, H. Noda, M. Tanaka, K. Uosaki, and M. Osawa, Macromolecules 36, 5694 (2003).
http://dx.doi.org/10.1021/ma026007d
3.
3. A. Deng, M. Himmelsbach, Q.-Z. Zhu, S. Frey, M. Sengl, W. Buchberger, R. Niessner, and D. Knopp, Environ. Sci. Technol. 37, 3422 (2003).
http://dx.doi.org/10.1021/es0341945
4.
4. Z. Xu, M. R. Gartia, C. J. Choi, J. Jiang, Y. Chen, B. T. Cunningham, and G. L. Liu, J. Raman Spectrosc. 42, 1939 (2011).
http://dx.doi.org/10.1002/jrs.2950
5.
5. X. Zhang, M. A. Young, O. Lyandres, and R. P. Van Duyne, J. Am. Chem. Soc. 127, 4484 (2005).
http://dx.doi.org/10.1021/ja043623b
6.
6. J. R. Lombardi and R. L. Birke, J. Phys. Chem. C 112, 5605 (2008).
http://dx.doi.org/10.1021/jp800167v
7.
7. Z. Wang, S. Zong, J. Yang, C. Song, J. Li, and Y. Cui, Biosens. Bioelectron. 26, 241 (2010).
http://dx.doi.org/10.1016/j.bios.2010.06.032
8.
8. L. Tong, M. Righini, M. U. Gonzalez, R. Quidant, and M. Käll, Lab Chip 9, 193 (2009).
http://dx.doi.org/10.1039/b813204f
9.
9. Y. S. Huh and D. Erickson, Biosens. Bioelectron. 25, 1240 (2010).
http://dx.doi.org/10.1016/j.bios.2009.09.040
10.
10. D. Li, L. Qu, W. Zhai, J. Xue, J. S. Fossey, and Y. Long, Environ. Sci. Technol. 45, 4046 (2011).
http://dx.doi.org/10.1021/es104155r
11.
11. A. M. Alkilany, P. K. Nagaria, C. R. Hexel, T. J. Shaw, C. J. Murphy, and M. D. Wyatt, Small 5, 701 (2009).
http://dx.doi.org/10.1002/smll.200801546
12.
12. S. Lee, S. Kim, J. Choo, S. Y. Shin, Y. H. Lee, H. Y. Choi, S. Ha, K. Kang, and C. H. Oh, Anal. Chem. 79, 916 (2007).
http://dx.doi.org/10.1021/ac061246a
13.
13. D. Büchel, C. Mihalcea, T. Fukaya, N. Atoda, J. Tominaga, T. Kikukawa, and H. Fuji, Appl. Phys. Lett. 79, 620 (2001).
http://dx.doi.org/10.1063/1.1389513
14.
14. A. Vittadini, A. Selloni, F. P. Rotzinger, and M. Grätzel, Phys. Rev. Lett. 81, 2954 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.2954
15.
15. J. E. Ellingsen, Biomaterials 12, 593 (1991).
http://dx.doi.org/10.1016/0142-9612(91)90057-H
16.
16. B. Li, R. Franking, E. C. Landis, H. Kim, and R. J. Hamers, ACS Appl. Mater. Interfaces 1, 1013 (2009).
http://dx.doi.org/10.1021/am900001h
17.
17. T. Albrektsson, P. I. Branemark, H. A. Hansson, and J. Lindstrom, Acta Orthop. Scand. 52, 155 (1981).
http://dx.doi.org/10.3109/17453678108991776
18.
18. M. Sivakumar, K. Venkatakrishnan, and B. Tan, Nanotechnology 21, 225601 (2010).
http://dx.doi.org/10.1088/0957-4484/21/22/225601
19.
19. Z. Tian, Z. Yang, and D. Wu, SERS from Transition Metals and Excited by Ultraviolet Light (Springer, 2006), Chap. 7.
20.
20. H. C. Yoon and H.-S. Kim, Anal. Chem. 72, 922 (2000).
http://dx.doi.org/10.1021/ac991299a
21.
21. C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, Anal. Chem. 77, 338A (2005).
http://dx.doi.org/10.1021/ac053456d
22.
22. S. Jariwala, K. Venkatakrishnan, and B. Tan, Opt. Express 18, 1630 (2010).
http://dx.doi.org/10.1364/OE.18.001630
23.
23. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, and M. J. Gratzel, J. Am. Chem. Soc. 115, 6382 (1993).
http://dx.doi.org/10.1021/ja00067a063
24.
24. M. A. Gauthier, I. Stangel, T. H. Ellis, and X. X. Zhu, Biomaterials 26, 6440 (2005).
http://dx.doi.org/10.1016/j.biomaterials.2005.04.039
25.
25. R. C. Maher, J. Hou, L. F. Cohen, E. C. Le Ru, J. M. Hadfield, J. E. Harvey, P. G. Etchegoin, F. M. Liu, M. C. Green, and R. J. C. Brown, J. Chem. Phys. 123, 084702 (2005).
http://dx.doi.org/10.1063/1.2004841
26.
26. S. Sahoo, A. K. Arora, and V. Sridharan, J. Phys. Chem. C 113, 16927 (2009).
http://dx.doi.org/10.1021/jp9046193
27.
27. P. Tarakeshwar, D. Finkelstein-Shapiro, S. J. Hurst, T. Rajh, and V. Mujica, J. Phys. Chem. C 115, 8994 (2011).
http://dx.doi.org/10.1021/jp202590e
28.
28. S. P. S. Porto, P. A. Fleury, and T. C. Damen, Phys. Rev. 154, 522 (1967).
http://dx.doi.org/10.1103/PhysRev.154.522
29.
29. T. Ohsaka, F. Izumi, and Y. Fujiki, J. Raman Spectrosc. 7, 321 (1978).
http://dx.doi.org/10.1002/jrs.1250070606
30.
30. M. Kurt and S. Yurdakul, J. Mol. Struct. 654, 1 (2003).
http://dx.doi.org/10.1016/S0022-2860(03)00185-6
31.
31. G. Li, S. Morita, S. Ye, M. Tanaka, and M. Osawa, Anal. Chem. 76, 788 (2004).
http://dx.doi.org/10.1021/ac0348874
32.
32. M. V. Canamares, C. Chenal, R. L. Birke, and J. R. Lombardi, J. Phys. Chem. C 112, 20295 (2008).
http://dx.doi.org/10.1021/jp807807j
33.
33. G.-K. Liu, B. Ren, D.-Y. Wu, S. Duan, J.-F. Li, J.-L. Yao, R.-A. Gu, and Z.-Q. Tian, J. Phys. Chem. B 110, 17498 (2006).
http://dx.doi.org/10.1021/jp060485z
34.
34. K. S. Jeong, C. Chang, E. Sedlmayr, and D. Sulzle, J. Phys. B 33, 3417 (2000).
http://dx.doi.org/10.1088/0953-4075/33/17/319
35.
35. T. Iliescu, M. Baia, and W. Kiefer, Chem. Phys. 298, 167 (2004).
http://dx.doi.org/10.1016/j.chemphys.2003.11.018
36.
36. Van Der J. Weerd and S. Kazarian, J. Pharm. Sci. 94, 2096 (2005).
http://dx.doi.org/10.1002/jps.20428
37.
37. M.-T. Sheu, H.-L. Chou, C.-C. Kao, C.-H. Liu, and T. D. Sokoloski, Int. J. Pharm. 85, 57 (1992).
http://dx.doi.org/10.1016/0378-5173(92)90134-N
38.
38. A. Tavangar, B. Tan, and K. Venkatakrishnan, Acta Biomater. 7, 2726 (2011).
http://dx.doi.org/10.1016/j.actbio.2011.02.020
39.
39. M. Baia, G. Melinte, L. Barbu-Tudoran, L. Diamandescu, V. Iancu, V. Cosoveanu, V. Danciu, and L. Baia, J. Phys.: Conf. Ser. 304, 012059 (2011).
http://dx.doi.org/10.1088/1742-6596/304/1/012059
40.
40. A. Yu Panarin, S. N. Terekhov, K. I. Kholostov, and V. P. Bondarenko, Appl. Surf. Sci. 256, 6969 (2010).
http://dx.doi.org/10.1016/j.apsusc.2010.05.008
41.
41. G. Wurtz, J. Hranisavljevic, and G. Wiederrecht, Nano Lett. 3, 1511 (2003).
http://dx.doi.org/10.1021/nl0345825
42.
42. R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Negro, Opt. Express 16, 5544 (2008).
http://dx.doi.org/10.1364/OE.16.005544
43.
43. See supplementary material at http://dx.doi.org/10.1063/1.4769112 for acquiring Raman and SNOM data (S1), BPA SERS spectrum analysis (S2), and determining the best Raman sensor pad (S3). [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/23/10.1063/1.4769112
Loading
/content/aip/journal/apl/101/23/10.1063/1.4769112
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/23/10.1063/1.4769112
2012-12-03
2014-09-18

Abstract

Sensor development has been reliant on planar Au and Ag nanoparticle research. The current findings explored a unique 3-D network of crystalline TiO2nanoparticles linked as nanofibers. In addition to the favorability of using TiO2 for chemical and bio-molecular sensing, the nanofiber network provides molecular diffusion control and an increased confocal volume signal. Controlled femtosecond laser synthesis is also demonstrated that directly impacts surface-enhanced Raman spectroscopy detection of two common environmentally harmful chemicals: bisphenol A and diclofenac sodium salt. These findings assert that 3-D nanofibrous network porosity optimization is crucial for Raman monitoring of drinking water.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/23/1.4769112.html;jsessionid=x9de3wsvklec.x-aip-live-06?itemId=/content/aip/journal/apl/101/23/10.1063/1.4769112&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: TiO2 nanofibrous interface development for Raman detection of environmental pollutants
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/23/10.1063/1.4769112
10.1063/1.4769112
SEARCH_EXPAND_ITEM