1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
The c-axis thermal conductivity of graphite film of nanometer thickness measured by time resolved X-ray diffraction
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/23/10.1063/1.4769214
1.
1. R. Murali, K. Brenner, Y. Yinxiao, T. Beck, and J. D. Meindl, IEEE Electron Device Lett. 30, 611 (2009).
http://dx.doi.org/10.1109/LED.2009.2020182
2.
2. J. Yu, G. Liu, A. V. Sumant, V. Goyal, and A. A. Balandin, Nano Lett. 12, 1603 (2012).
http://dx.doi.org/10.1021/nl204545q
3.
3. S. Nie, X. Wang, H. Park, R. Clinite, and J. Cao, Phys. Rev. Lett. 96, 025901 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.025901
4.
4. M. Harb, W. Peng, G. Sciaini, C. T. Hebeisen, R. Ernstorfer, M. A. Eriksson, M. G. Lagally, S. Kruglik, and R. J. D. Miller, Phys. Rev. B 79, 094301 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.094301
5.
5. S. O. Mariager, D. Khakhulin, H. T. Lemke, K. S. Kjaer, L. Guerin, L. Nuccio, C. B. Sørensen, M. M. Nielsen, and R. Feidenhans, Nano Lett. 10, 2461 (2010).
http://dx.doi.org/10.1021/nl100798y
6.
6. G. Moriena, M. Hada, G. Sciaini, J. Matsuo, and R. J. D. Miller, J. Appl. Phys. 111, 043504 (2012).
http://dx.doi.org/10.1063/1.3684975
7.
7. R. K. Raman, Y. Murooka, C.-Y. Ruan, T. Yang, S. Berber, and D. Tománek, Phys. Rev. Lett. 101, 077401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.077401
8.
8. G. Sciaini and R. J. Dwayne Miller, Rep. Prog. Phys. 74, 096101 (2011).
http://dx.doi.org/10.1088/0034-4885/74/9/096101
9.
9. M. Chergui and A. H. Zewail, Chem. Phys. Chem. 10, 28, (2009).
http://dx.doi.org/10.1002/cphc.200800667
10.
10. K. Sun, M. A. Stroscio, and M. Dutta, Superlattices Microstruct. 45, 60 (2009).
http://dx.doi.org/10.1016/j.spmi.2008.11.018
11.
11. Z. Wei, Z. Ni, K. Bi, M. Chen, and Y. Chen, Phys. Lett. A 375, 1195 (2011).
http://dx.doi.org/10.1016/j.physleta.2011.01.025
12.
12. A. A. Balandin, Nature Mater. 10, 569 (2011).
http://dx.doi.org/10.1038/nmat3064
13.
13. A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin, Carbon 45, 2017 (2007).
http://dx.doi.org/10.1016/j.carbon.2007.05.028
14.
14. A. V. Tyurnina, R. R. Ismagilov, A. V. Chuvilin, and A. N. Obraztsov, Phys. Status Solidi B 247, 3010 (2010).
http://dx.doi.org/10.1002/pssb.201000456
15.
15. T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, and M. Wolf, Phys. Rev. Lett. 95, 187403 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.187403
16.
16. CRC Handbook of Chemistry and Physics, 92nd ed., edited by William M. Haynes (CRC, Boca Raton, FL, 2011).
17.
17. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel'man, Sov. Phys. JETP 39, 375 (1974).
18.
18. A. Hu, M. Rybachuk, Q.-B. Lu, and W. W. Duley, Appl. Phys. Lett. 91, 131906 (2007).
http://dx.doi.org/10.1063/1.2793628
19.
19. Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic, Boston, 1985).
20.
20. E. A. Kellett and B. P. Richards, J. Appl. Crystallogr. 4, 1 (1971).
http://dx.doi.org/10.1107/S0021889871006149
21.
21. S.-W. Chang, A. K. Nair, and M. J. Buehler, J. Phys.: Condens. Matter 24, 245301 (2012).
http://dx.doi.org/10.1088/0953-8984/24/24/245301
22.
22. G. A. Slack, Phys. Rev. 127, 694 (1962).
http://dx.doi.org/10.1103/PhysRev.127.694
23.
23. R. Taylor, Philos. Mag. 13, 157 (1966).
http://dx.doi.org/10.1080/14786436608211993
24.
24. A. A. Balandin, M. Shamsa, W. L. Liu, C. Casiraghi, and A. C. Ferrari, Appl. Phys. Lett. 93, 043115 (2008).
http://dx.doi.org/10.1063/1.2957041
25.
25. W. Jang, Z. Chen, W. Bao, C. N. Lau, and C. Dames, Nano Lett. 10, 3909 (2010).
http://dx.doi.org/10.1021/nl101613u
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/23/10.1063/1.4769214
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Cross-sectional SEM image of the CVD graphite film (upper part) on Ni (bottom part). The thickness of the film is estimated to be 35 nm.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Diffraction image of the free-standing graphite film. (b) The corresponding azimuthally averaged intensity profile (solid line). The calculated positions of the diffraction orders (dotted lines) agree with the measurement. Absence of the 00l diffraction orders in the pattern is consistent with the sample crystallinity, where the graphite basal planes are grown parallel to the surface of the nickel substrate.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Selected snapshots of the 002 reflection of graphite, captured at different time delays relative to excitation at an incident fluence of 25 mJ/cm2. The shift in the position of the diffraction spot relative to the position at negative delays (solid line) is indicative of c-axis strain. (b) Kinetics of the shift in the position of the 002 reflection are characterized by two features: an initial fast build-up of strain limited by the instrument response time and a relaxation occurring at the nanosecond time scale. The inset is a blowout of the initial evolution of strain. Data in the inset were fitted to an error function to extract the instrument response time of 56 ps (FWHM). Error bars represent ± standard error obtained from the fit of the diffraction profile to a gaussian function.

Image of FIG. 4.

Click to view

FIG. 4.

Simulations results (solid line) of the strain show reasonable agreement with the measurement (circles) for a c-axis thermal conductivity value of 0.7 W K−1 m−1. The dashed (dotted) lines represent sensitivity analysis showing the impact of a 2-fold increase (decrease) in the thermal conductivity.

Tables

Generic image for table

Click to view

Table I.

Parameters used in the heat diffusion simulation.

Loading

Article metrics loading...

/content/aip/journal/apl/101/23/10.1063/1.4769214
2012-12-05
2014-04-17

Abstract

We report on the use of time resolved X-ray diffraction to measure the dynamics of strain in laser-excited graphitefilm of nanometer thickness, obtained by chemical vapour deposition(CVD).Heat transport in the CVDfilm is simulated with a 1-dimensional heat diffusion model. We find the experimental data to be consistent with a c-axis thermal conductivity of ∼0.7 W m−1 K−1. This value is four orders of magnitude lower than the thermal conductivity in-plane, confirming recent theoretical calculations of the thermal conductivity of multilayer graphene.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/23/1.4769214.html;jsessionid=6oap881eu7ddm.x-aip-live-02?itemId=/content/aip/journal/apl/101/23/10.1063/1.4769214&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The c-axis thermal conductivity of graphite film of nanometer thickness measured by time resolved X-ray diffraction
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/23/10.1063/1.4769214
10.1063/1.4769214
SEARCH_EXPAND_ITEM