1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
The c-axis thermal conductivity of graphite film of nanometer thickness measured by time resolved X-ray diffraction
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/23/10.1063/1.4769214
1.
1. R. Murali, K. Brenner, Y. Yinxiao, T. Beck, and J. D. Meindl, IEEE Electron Device Lett. 30, 611 (2009).
http://dx.doi.org/10.1109/LED.2009.2020182
2.
2. J. Yu, G. Liu, A. V. Sumant, V. Goyal, and A. A. Balandin, Nano Lett. 12, 1603 (2012).
http://dx.doi.org/10.1021/nl204545q
3.
3. S. Nie, X. Wang, H. Park, R. Clinite, and J. Cao, Phys. Rev. Lett. 96, 025901 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.025901
4.
4. M. Harb, W. Peng, G. Sciaini, C. T. Hebeisen, R. Ernstorfer, M. A. Eriksson, M. G. Lagally, S. Kruglik, and R. J. D. Miller, Phys. Rev. B 79, 094301 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.094301
5.
5. S. O. Mariager, D. Khakhulin, H. T. Lemke, K. S. Kjaer, L. Guerin, L. Nuccio, C. B. Sørensen, M. M. Nielsen, and R. Feidenhans, Nano Lett. 10, 2461 (2010).
http://dx.doi.org/10.1021/nl100798y
6.
6. G. Moriena, M. Hada, G. Sciaini, J. Matsuo, and R. J. D. Miller, J. Appl. Phys. 111, 043504 (2012).
http://dx.doi.org/10.1063/1.3684975
7.
7. R. K. Raman, Y. Murooka, C.-Y. Ruan, T. Yang, S. Berber, and D. Tománek, Phys. Rev. Lett. 101, 077401 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.077401
8.
8. G. Sciaini and R. J. Dwayne Miller, Rep. Prog. Phys. 74, 096101 (2011).
http://dx.doi.org/10.1088/0034-4885/74/9/096101
9.
9. M. Chergui and A. H. Zewail, Chem. Phys. Chem. 10, 28, (2009).
http://dx.doi.org/10.1002/cphc.200800667
10.
10. K. Sun, M. A. Stroscio, and M. Dutta, Superlattices Microstruct. 45, 60 (2009).
http://dx.doi.org/10.1016/j.spmi.2008.11.018
11.
11. Z. Wei, Z. Ni, K. Bi, M. Chen, and Y. Chen, Phys. Lett. A 375, 1195 (2011).
http://dx.doi.org/10.1016/j.physleta.2011.01.025
12.
12. A. A. Balandin, Nature Mater. 10, 569 (2011).
http://dx.doi.org/10.1038/nmat3064
13.
13. A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin, Carbon 45, 2017 (2007).
http://dx.doi.org/10.1016/j.carbon.2007.05.028
14.
14. A. V. Tyurnina, R. R. Ismagilov, A. V. Chuvilin, and A. N. Obraztsov, Phys. Status Solidi B 247, 3010 (2010).
http://dx.doi.org/10.1002/pssb.201000456
15.
15. T. Kampfrath, L. Perfetti, F. Schapper, C. Frischkorn, and M. Wolf, Phys. Rev. Lett. 95, 187403 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.187403
16.
16. CRC Handbook of Chemistry and Physics, 92nd ed., edited by William M. Haynes (CRC, Boca Raton, FL, 2011).
17.
17. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel'man, Sov. Phys. JETP 39, 375 (1974).
18.
18. A. Hu, M. Rybachuk, Q.-B. Lu, and W. W. Duley, Appl. Phys. Lett. 91, 131906 (2007).
http://dx.doi.org/10.1063/1.2793628
19.
19. Handbook of Optical Constants of Solids, edited by E. D. Palik (Academic, Boston, 1985).
20.
20. E. A. Kellett and B. P. Richards, J. Appl. Crystallogr. 4, 1 (1971).
http://dx.doi.org/10.1107/S0021889871006149
21.
21. S.-W. Chang, A. K. Nair, and M. J. Buehler, J. Phys.: Condens. Matter 24, 245301 (2012).
http://dx.doi.org/10.1088/0953-8984/24/24/245301
22.
22. G. A. Slack, Phys. Rev. 127, 694 (1962).
http://dx.doi.org/10.1103/PhysRev.127.694
23.
23. R. Taylor, Philos. Mag. 13, 157 (1966).
http://dx.doi.org/10.1080/14786436608211993
24.
24. A. A. Balandin, M. Shamsa, W. L. Liu, C. Casiraghi, and A. C. Ferrari, Appl. Phys. Lett. 93, 043115 (2008).
http://dx.doi.org/10.1063/1.2957041
25.
25. W. Jang, Z. Chen, W. Bao, C. N. Lau, and C. Dames, Nano Lett. 10, 3909 (2010).
http://dx.doi.org/10.1021/nl101613u
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/23/10.1063/1.4769214
Loading
/content/aip/journal/apl/101/23/10.1063/1.4769214
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/23/10.1063/1.4769214
2012-12-05
2014-12-21

Abstract

We report on the use of time resolved X-ray diffraction to measure the dynamics of strain in laser-excited graphitefilm of nanometer thickness, obtained by chemical vapour deposition(CVD).Heat transport in the CVDfilm is simulated with a 1-dimensional heat diffusion model. We find the experimental data to be consistent with a c-axis thermal conductivity of ∼0.7 W m−1 K−1. This value is four orders of magnitude lower than the thermal conductivity in-plane, confirming recent theoretical calculations of the thermal conductivity of multilayer graphene.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/23/1.4769214.html;jsessionid=bb76hf534i6er.x-aip-live-06?itemId=/content/aip/journal/apl/101/23/10.1063/1.4769214&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The c-axis thermal conductivity of graphite film of nanometer thickness measured by time resolved X-ray diffraction
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/23/10.1063/1.4769214
10.1063/1.4769214
SEARCH_EXPAND_ITEM