1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Energy level alignment at the interfaces between typical electrodes and nucleobases: Al/adenine/indium-tin-oxide and Al/thymine/indium-tin-oxide
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/23/10.1063/1.4769438
1.
1. C. D. Muller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker, and K. Meerholz, Nature 421, 829 (2003).
http://dx.doi.org/10.1038/nature01390
2.
2. Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, IEEE Electron Device Lett. 18, 606 (1997).
http://dx.doi.org/10.1109/55.644085
3.
3. P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003).
http://dx.doi.org/10.1063/1.1534621
4.
4. D. Fyfe, Nat. Photonics 3, 453 (2009).
http://dx.doi.org/10.1038/nphoton.2009.132
5.
5. J. A. Hagen, W. Li, A. J. Steckl, and J. G. Grote, Appl. Phys. Lett. 88, 171109 (2006).
http://dx.doi.org/10.1063/1.2197973
6.
6. A. J. Steckl, Nat. Photonics 1, 3 (2007).
http://dx.doi.org/10.1038/nphoton.2006.56
7.
7. J. A. Hagen, W. X. Li, H. Spaeth, J. G. Grote, and A. J. Steckl, Nano Lett. 7, 133 (2007).
http://dx.doi.org/10.1021/nl062342u
8.
8. E. Yengel, A. B. Guvenc, S. Guo, H. E. Akin, M. Ozkan, and C. S. Ozkan, J. Nanoelectron. Optoelectron. 6, 121 (2011).
http://dx.doi.org/10.1166/jno.2011.1146
9.
9. J. Jin and J. Grote, Materials Science of DNA (CRC, London, 2011).
10.
10. R. G. Endres, D. L. Cox, and R. R. P. Singh, Rev. Mod. Phys. 76, 195 (2004).
http://dx.doi.org/10.1103/RevModPhys.76.195
11.
11. J. Magulick, M. M. Beerbom, and R. Schlaf, J. Phys. Chem. B 110, 15973 (2006).
http://dx.doi.org/10.1021/jp062231j
12.
12. H. Lee, S. W. Cho, K. Han, P. E. Jeon, C. N. Whang, K. Jeong, K. Cho, and Y. Yi, Appl. Phys. Lett. 93, 043308 (2008).
http://dx.doi.org/10.1063/1.2965120
13.
13. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
14.
14. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
15.
15. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. E. Hada, M. K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford, CT, 2009).
16.
16. D. R. T. Zahn, G. N. Gavrila, and G. Salvan, Chem. Rev. 107, 1161 (2007).
http://dx.doi.org/10.1021/cr050141p
17.
17. H. Lüth, Surfaces and Interfaces of Solid Materials (Springer, New York, 1995).
18.
18. C. Yu, T. J. ODonnell, and P. R. LeBteton, J. Phys. Chem. 85, 3851 (1981).
http://dx.doi.org/10.1021/j150625a028
19.
19. Y. Hirose, A. Kahn, V. Aristov, and P. Soukiassian, Appl. Phys. Lett. 68, 217 (1996).
http://dx.doi.org/10.1063/1.116465
20.
20. A. Kahn, N. Koch, and W. Gao, J. Polym. Sci., Part B: Polym. Phys. 41, 2529 (2003).
http://dx.doi.org/10.1002/polb.10642
21.
21. P. Zalar, D. Kamkar, R. Naik, F. Ouchen, J. G. Grote, G. C. Bazan, and T. Q. Nguyen, J. Am. Chem. Soc. 133, 11010 (2011).
http://dx.doi.org/10.1021/ja201868d
22.
22. Y. Zhang, P. Zalar, C. Kim, S. Collins, G. C. Bazan, and T.-Q. Nguyen, Adv. Mater. 24, 4255 (2012).
http://dx.doi.org/10.1002/adma.201201248
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.4769438 for the estimation of system broadening and He Iβ satellite removal. [Supplementary Material]
24.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/23/10.1063/1.4769438
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Measured He Ι (21.22 eV) UPS spectra of the (a) normalized secondary electron cutoff region, (b) HOMO region with background removal, and (c) deconvoluted N 1 core levels. N1 is imine (-N=) and N2 and N3 are the amine (-NH and -NH), respectively. N4 is a new component for the chemical interaction between N and Al. Each spectrum was obtained from oxygen plasma treated ITO, Al (0.01, 0.02, 0.2, 0.7, 2.0 nm)/adenine (0.5, 1.0, 2.0, 3.0 nm)/ITO.

Image of FIG. 2.

Click to view

FIG. 2.

UPS spectra showing the (a) secondary electron cutoff region normalized for easy comparison, (b) HOMO region with background removal of thymine. Each spectrum was obtained from oxygen plasma treated ITO, Al (0.01, 0.02, 0.07, 0.2, 0.7, 2.0 nm)/thymine (0.5, 1.0, 2.0, 4.0 nm)/ITO.

Image of FIG. 3.

Click to view

FIG. 3.

Energy level diagrams summarizing the results of (a) ITO/adenine/Al and (b) ITO/thymine/Al. Φ is the electron injection barrier and E is the ionization energy of adenine and thymine. The level bending (V) was evaluated from the shift of the HOMO and N 1 level during deposition.

Image of FIG. 4.

Click to view

FIG. 4.

Simulated UPS (shaded) and orbital configurations of HOMO and LUMO of (a) adenine and (b) thymine. Corresponding PES spectra of pristine adenine and thymine are also depicted.

Loading

Article metrics loading...

/content/aip/journal/apl/101/23/10.1063/1.4769438
2012-12-06
2014-04-17

Abstract

We investigated the interfacial electronic structures of Al/adenine/indium-tin-oxide (ITO) and Al/thymine/ITO using ultraviolet and x-ray photoemission spectroscopy and density functional theory calculations. Adenine shows both an interface dipole and level bending, whereas thymine shows only an interface dipole in contact with ITO. In addition, thymine possesses a larger ionization energy than adenine. These are understood with delocalized π states confirmed with theoretical calculations. For the interface between nucleobases and Al, both nucleobases show a prominent reduction of the electron injection barrier from Al to each base in accordance with a downward level shift.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/23/1.4769438.html;jsessionid=6bttab3klral.x-aip-live-02?itemId=/content/aip/journal/apl/101/23/10.1063/1.4769438&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Energy level alignment at the interfaces between typical electrodes and nucleobases: Al/adenine/indium-tin-oxide and Al/thymine/indium-tin-oxide
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/23/10.1063/1.4769438
10.1063/1.4769438
SEARCH_EXPAND_ITEM