1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Energy level alignment at the interfaces between typical electrodes and nucleobases: Al/adenine/indium-tin-oxide and Al/thymine/indium-tin-oxide
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/23/10.1063/1.4769438
1.
1. C. D. Muller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker, and K. Meerholz, Nature 421, 829 (2003).
http://dx.doi.org/10.1038/nature01390
2.
2. Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, IEEE Electron Device Lett. 18, 606 (1997).
http://dx.doi.org/10.1109/55.644085
3.
3. P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003).
http://dx.doi.org/10.1063/1.1534621
4.
4. D. Fyfe, Nat. Photonics 3, 453 (2009).
http://dx.doi.org/10.1038/nphoton.2009.132
5.
5. J. A. Hagen, W. Li, A. J. Steckl, and J. G. Grote, Appl. Phys. Lett. 88, 171109 (2006).
http://dx.doi.org/10.1063/1.2197973
6.
6. A. J. Steckl, Nat. Photonics 1, 3 (2007).
http://dx.doi.org/10.1038/nphoton.2006.56
7.
7. J. A. Hagen, W. X. Li, H. Spaeth, J. G. Grote, and A. J. Steckl, Nano Lett. 7, 133 (2007).
http://dx.doi.org/10.1021/nl062342u
8.
8. E. Yengel, A. B. Guvenc, S. Guo, H. E. Akin, M. Ozkan, and C. S. Ozkan, J. Nanoelectron. Optoelectron. 6, 121 (2011).
http://dx.doi.org/10.1166/jno.2011.1146
9.
9. J. Jin and J. Grote, Materials Science of DNA (CRC, London, 2011).
10.
10. R. G. Endres, D. L. Cox, and R. R. P. Singh, Rev. Mod. Phys. 76, 195 (2004).
http://dx.doi.org/10.1103/RevModPhys.76.195
11.
11. J. Magulick, M. M. Beerbom, and R. Schlaf, J. Phys. Chem. B 110, 15973 (2006).
http://dx.doi.org/10.1021/jp062231j
12.
12. H. Lee, S. W. Cho, K. Han, P. E. Jeon, C. N. Whang, K. Jeong, K. Cho, and Y. Yi, Appl. Phys. Lett. 93, 043308 (2008).
http://dx.doi.org/10.1063/1.2965120
13.
13. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
http://dx.doi.org/10.1063/1.464913
14.
14. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.785
15.
15. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. E. Hada, M. K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford, CT, 2009).
16.
16. D. R. T. Zahn, G. N. Gavrila, and G. Salvan, Chem. Rev. 107, 1161 (2007).
http://dx.doi.org/10.1021/cr050141p
17.
17. H. Lüth, Surfaces and Interfaces of Solid Materials (Springer, New York, 1995).
18.
18. C. Yu, T. J. ODonnell, and P. R. LeBteton, J. Phys. Chem. 85, 3851 (1981).
http://dx.doi.org/10.1021/j150625a028
19.
19. Y. Hirose, A. Kahn, V. Aristov, and P. Soukiassian, Appl. Phys. Lett. 68, 217 (1996).
http://dx.doi.org/10.1063/1.116465
20.
20. A. Kahn, N. Koch, and W. Gao, J. Polym. Sci., Part B: Polym. Phys. 41, 2529 (2003).
http://dx.doi.org/10.1002/polb.10642
21.
21. P. Zalar, D. Kamkar, R. Naik, F. Ouchen, J. G. Grote, G. C. Bazan, and T. Q. Nguyen, J. Am. Chem. Soc. 133, 11010 (2011).
http://dx.doi.org/10.1021/ja201868d
22.
22. Y. Zhang, P. Zalar, C. Kim, S. Collins, G. C. Bazan, and T.-Q. Nguyen, Adv. Mater. 24, 4255 (2012).
http://dx.doi.org/10.1002/adma.201201248
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.4769438 for the estimation of system broadening and He Iβ satellite removal. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/23/10.1063/1.4769438
Loading
/content/aip/journal/apl/101/23/10.1063/1.4769438
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/23/10.1063/1.4769438
2012-12-06
2014-10-21

Abstract

We investigated the interfacial electronic structures of Al/adenine/indium-tin-oxide (ITO) and Al/thymine/ITO using ultraviolet and x-ray photoemission spectroscopy and density functional theory calculations. Adenine shows both an interface dipole and level bending, whereas thymine shows only an interface dipole in contact with ITO. In addition, thymine possesses a larger ionization energy than adenine. These are understood with delocalized π states confirmed with theoretical calculations. For the interface between nucleobases and Al, both nucleobases show a prominent reduction of the electron injection barrier from Al to each base in accordance with a downward level shift.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/23/1.4769438.html;jsessionid=12j4lknra73bj.x-aip-live-03?itemId=/content/aip/journal/apl/101/23/10.1063/1.4769438&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Energy level alignment at the interfaces between typical electrodes and nucleobases: Al/adenine/indium-tin-oxide and Al/thymine/indium-tin-oxide
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/23/10.1063/1.4769438
10.1063/1.4769438
SEARCH_EXPAND_ITEM