NOTICE: Scitation Maintenance Tuesday, May 5, 2015

Scitation will be unavailable on Tuesday, May 5, 2015 between 3:00 AM and 4:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Reduced graphene oxide based flexible organic charge trap memory devices
Rent this article for
Access full text Article
1. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
2. H. Y. Jeong, J. Y. Kim, J. W. Kim, J. O. Hwang, J. E. Kim, J. Y. Lee, T. H. Yoon, B. J. Cho, S. O. Kim, R. S. Ruoff, and S. Y. Choi, Nano Lett. 10, 4381 (2010).
3. D. I. Son, T. W. Kim, J. H. Shim, J. H. Jung, D. U. Lee, J. M. Lee, W. Il Park, and W. K. Choi, Nano Lett. 10, 2441 (2010).
4. S. Wang, P. K. Ang, Z. Q. Wang, A. L. L. Tang, J. T. L. Thong, and K. P. Loh, Nano Lett. 10, 92 (2010).
5. B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, Nano Lett. 10, 3464 (2010).
6. X. B. Yang, G. X. Liu, A. A. Balandin, and K. Mohanram, ACS Nano 4, 5532 (2010).
7. S. Lee, G. Jo, S. J. Kang, G. Wang, M. Choe, W. Park, D. Y. Kim, Y. H. Kahng, and T. Lee, Adv. Mater. 23, 100 (2011).
8. M. Choe, B. H. Lee, G. Jo, J. Park, W. Park, S. Lee, W. K. Hong, M. J. Seong, Y. H. Kahng, K. Lee, and T. Lee, Org. Electron. 11, 1864 (2010).
9. L. G. De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou, ACS Nano 4, 2865 (2010).
10. Z. Y. Yin, S. Y. Sun, T. Salim, S. X. Wu, X. A. Huang, Q. Y. He, Y. M. Lam, and H. Zhang, ACS Nano 4, 5263 (2010).
11. J. B. Wu, M. Agrawal, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen, and P. Peumans, ACS Nano 4, 43 (2010).
12. P. Matyba, H. Yamaguchi, G. Eda, M. Chhowalla, L. Edman, and N. D. Robinson, ACS Nano 4, 637 (2010).
13. G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, Nanotechnology 21, 175201 (2010).
14. Y. Ji, S. Lee, B. Cho, S. Song, and T. Lee, ACS Nano 5, 5995 (2011).
15. Y. Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. H. Lin, Electroanalysis 22, 1027 (2010).
16. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photonics 4, 611 (2010).
17. S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010).
18. R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, Proc. IEEE 91, 489 (2003).
19. K. M. Milaninia, M. A. Baldo, A. Reina, and J. Kong, Appl. Phys. Lett. 95, 183105 (2009).
20. E. B. Song, B. Lian, S. M. Kim, S. Lee, T. K. Chung, M. S. Wang, C. F. Zeng, G. Y. Xu, K. Wong, Y. Zhou, H. I. Rasool, D. H. Seo, H. J. Chung, J. Heo, S. Seo, and K. L. Wang, Appl. Phys. Lett. 99, 042109 (2011).
21. T. W. Kim, Y. Gao, O. Acton, H. L. Yip, H. Ma, H. Z. Chen, and A. K. Y. Jen, Appl. Phys. Lett. 97, 023310 (2010).
22. D. J. Baek, M. L. Seol, S. J. Choi, D. I. Moon, and Y. K. Choi, Appl. Phys. Lett. 100, 093106 (2012).
23. A. J. Hong, E. B. Song, H. S. Yu, M. J. Allen, J. Kim, J. D. Fowler, J. K. Wassei, Y. Park, Y. Wang, J. Zou, R. B. Kaner, B. H. Weiller, and K. L. Wang, ACS Nano 5, 7812 (2011).
24. D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, Nat. Nanotechnol. 3, 101 (2008).
25. S. J. Kim and J. S. Lee, Nano Lett. 10, 2884 (2010).
26. A. Rani, K. A. Oh, H. Koo, H. J. Lee, and M. Park, Appl. Surf. Sci. 257, 4982 (2011).
27. J. G. Chen, H. Y. Wei, and K. C. Ho, Sol. Energy Mater. Sol. Cells 91, 1472 (2007).
28. X. F. Gao, J. Jang, and S. Nagase, J. Phys. Chem. C 114, 832 (2010).
29. G. Eda and M. Chhowalla, Adv. Mater. 22, 2392 (2010).
30. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon 45, 1558 (2007).
31. C. Gomez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Nano Lett. 7, 3499 (2007).
32. G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008).
33. I. Jung, D. A. Dikin, R. D. Piner, and R. S. Ruoff, Nano Lett. 8, 4283 (2008).
34. K. P. Loh, Q. L. Bao, G. Eda, and M. Chhowalla, Nat. Chem. 2, 1015 (2010).
35. D. Y. Pan, J. C. Zhang, Z. Li, and M. H. Wu, Adv. Mater. 22, 734 (2010).
36. J. Jang, C. Choi, J. S. Lee, K. S. Min, J. Lee, D. M. Kim, and D. H. Kim, Semicond. Sci. Technol. 24, 115009 (2009).

Data & Media loading...


Article metrics loading...



A nonvolatile organic transistor memory device was developed using layer-by-layer assembly of 3-aminopropyltriethoxysilane (APTES) and solution-processed, reduced graphene oxide (rGO) as the charge trapping layer on flexible substrates. Reduction of graphene oxide and successful adsorption of the rGO on APTES-covered substrates were confirmed. The organic memory devices based on rGO exhibited reliable programmable memory operations, confirmed by program/erase operations, data retention, and endurance properties. These methods can potentially play a significant role in the fabrication of next-generation flexible nonvolatile memory devices based on graphene materials.


Full text loading...

This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Reduced graphene oxide based flexible organic charge trap memory devices