1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Reduced graphene oxide based flexible organic charge trap memory devices
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/23/10.1063/1.4769990
1.
1. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
2.
2. H. Y. Jeong, J. Y. Kim, J. W. Kim, J. O. Hwang, J. E. Kim, J. Y. Lee, T. H. Yoon, B. J. Cho, S. O. Kim, R. S. Ruoff, and S. Y. Choi, Nano Lett. 10, 4381 (2010).
http://dx.doi.org/10.1021/nl101902k
3.
3. D. I. Son, T. W. Kim, J. H. Shim, J. H. Jung, D. U. Lee, J. M. Lee, W. Il Park, and W. K. Choi, Nano Lett. 10, 2441 (2010).
http://dx.doi.org/10.1021/nl1006036
4.
4. S. Wang, P. K. Ang, Z. Q. Wang, A. L. L. Tang, J. T. L. Thong, and K. P. Loh, Nano Lett. 10, 92 (2010).
http://dx.doi.org/10.1021/nl9028736
5.
5. B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J. H. Ahn, and J. H. Cho, Nano Lett. 10, 3464 (2010).
http://dx.doi.org/10.1021/nl101559n
6.
6. X. B. Yang, G. X. Liu, A. A. Balandin, and K. Mohanram, ACS Nano 4, 5532 (2010).
http://dx.doi.org/10.1021/nn1021583
7.
7. S. Lee, G. Jo, S. J. Kang, G. Wang, M. Choe, W. Park, D. Y. Kim, Y. H. Kahng, and T. Lee, Adv. Mater. 23, 100 (2011).
http://dx.doi.org/10.1002/adma.201003165
8.
8. M. Choe, B. H. Lee, G. Jo, J. Park, W. Park, S. Lee, W. K. Hong, M. J. Seong, Y. H. Kahng, K. Lee, and T. Lee, Org. Electron. 11, 1864 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.08.018
9.
9. L. G. De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. W. Zhou, ACS Nano 4, 2865 (2010).
http://dx.doi.org/10.1021/nn901587x
10.
10. Z. Y. Yin, S. Y. Sun, T. Salim, S. X. Wu, X. A. Huang, Q. Y. He, Y. M. Lam, and H. Zhang, ACS Nano 4, 5263 (2010).
http://dx.doi.org/10.1021/nn1015874
11.
11. J. B. Wu, M. Agrawal, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen, and P. Peumans, ACS Nano 4, 43 (2010).
http://dx.doi.org/10.1021/nn900728d
12.
12. P. Matyba, H. Yamaguchi, G. Eda, M. Chhowalla, L. Edman, and N. D. Robinson, ACS Nano 4, 637 (2010).
http://dx.doi.org/10.1021/nn9018569
13.
13. G. Jo, M. Choe, C. Y. Cho, J. H. Kim, W. Park, S. Lee, W. K. Hong, T. W. Kim, S. J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, Nanotechnology 21, 175201 (2010).
http://dx.doi.org/10.1088/0957-4484/21/17/175201
14.
14. Y. Ji, S. Lee, B. Cho, S. Song, and T. Lee, ACS Nano 5, 5995 (2011).
http://dx.doi.org/10.1021/nn201770s
15.
15. Y. Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. H. Lin, Electroanalysis 22, 1027 (2010).
http://dx.doi.org/10.1002/elan.200900571
16.
16. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photonics 4, 611 (2010).
http://dx.doi.org/10.1038/nphoton.2010.186
17.
17. S. Bae, H. Kim, Y. Lee, X. F. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010).
http://dx.doi.org/10.1038/nnano.2010.132
18.
18. R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, Proc. IEEE 91, 489 (2003).
http://dx.doi.org/10.1109/JPROC.2003.811702
19.
19. K. M. Milaninia, M. A. Baldo, A. Reina, and J. Kong, Appl. Phys. Lett. 95, 183105 (2009).
http://dx.doi.org/10.1063/1.3259415
20.
20. E. B. Song, B. Lian, S. M. Kim, S. Lee, T. K. Chung, M. S. Wang, C. F. Zeng, G. Y. Xu, K. Wong, Y. Zhou, H. I. Rasool, D. H. Seo, H. J. Chung, J. Heo, S. Seo, and K. L. Wang, Appl. Phys. Lett. 99, 042109 (2011).
http://dx.doi.org/10.1063/1.3619816
21.
21. T. W. Kim, Y. Gao, O. Acton, H. L. Yip, H. Ma, H. Z. Chen, and A. K. Y. Jen, Appl. Phys. Lett. 97, 023310 (2010).
http://dx.doi.org/10.1063/1.3464292
22.
22. D. J. Baek, M. L. Seol, S. J. Choi, D. I. Moon, and Y. K. Choi, Appl. Phys. Lett. 100, 093106 (2012).
http://dx.doi.org/10.1063/1.3690670
23.
23. A. J. Hong, E. B. Song, H. S. Yu, M. J. Allen, J. Kim, J. D. Fowler, J. K. Wassei, Y. Park, Y. Wang, J. Zou, R. B. Kaner, B. H. Weiller, and K. L. Wang, ACS Nano 5, 7812 (2011).
http://dx.doi.org/10.1021/nn201809k
24.
24. D. Li, M. B. Muller, S. Gilje, R. B. Kaner, and G. G. Wallace, Nat. Nanotechnol. 3, 101 (2008).
http://dx.doi.org/10.1038/nnano.2007.451
25.
25. S. J. Kim and J. S. Lee, Nano Lett. 10, 2884 (2010).
http://dx.doi.org/10.1021/nl1009662
26.
26. A. Rani, K. A. Oh, H. Koo, H. J. Lee, and M. Park, Appl. Surf. Sci. 257, 4982 (2011).
http://dx.doi.org/10.1016/j.apsusc.2011.01.007
27.
27. J. G. Chen, H. Y. Wei, and K. C. Ho, Sol. Energy Mater. Sol. Cells 91, 1472 (2007).
http://dx.doi.org/10.1016/j.solmat.2007.03.024
28.
28. X. F. Gao, J. Jang, and S. Nagase, J. Phys. Chem. C 114, 832 (2010).
http://dx.doi.org/10.1021/jp909284g
29.
29. G. Eda and M. Chhowalla, Adv. Mater. 22, 2392 (2010).
http://dx.doi.org/10.1002/adma.200903689
30.
30. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon 45, 1558 (2007).
http://dx.doi.org/10.1016/j.carbon.2007.02.034
31.
31. C. Gomez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Nano Lett. 7, 3499 (2007).
http://dx.doi.org/10.1021/nl072090c
32.
32. G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008).
http://dx.doi.org/10.1038/nnano.2008.83
33.
33. I. Jung, D. A. Dikin, R. D. Piner, and R. S. Ruoff, Nano Lett. 8, 4283 (2008).
http://dx.doi.org/10.1021/nl8019938
34.
34. K. P. Loh, Q. L. Bao, G. Eda, and M. Chhowalla, Nat. Chem. 2, 1015 (2010).
http://dx.doi.org/10.1038/nchem.907
35.
35. D. Y. Pan, J. C. Zhang, Z. Li, and M. H. Wu, Adv. Mater. 22, 734 (2010).
http://dx.doi.org/10.1002/adma.200902825
36.
36. J. Jang, C. Choi, J. S. Lee, K. S. Min, J. Lee, D. M. Kim, and D. H. Kim, Semicond. Sci. Technol. 24, 115009 (2009).
http://dx.doi.org/10.1088/0268-1242/24/11/115009
37.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/23/10.1063/1.4769990
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Three-dimensional schematic illustration of rGO-based organic transistor memory device. (b) Photograph of the fabricated flexible rGO transistor memory devices. (c) SEM image of rGO on the APTES-coated substrate.

Image of FIG. 2.

Click to view

FIG. 2.

XPS C1s spectra of (a) graphene oxide and (b) rGO. (c) UV-vis absorbance of dilute solutions of graphene oxide and rGO. (d) Raman spectrum of the rGO.

Image of FIG. 3.

Click to view

FIG. 3.

Electrical properties of rGO transistor organic memory devices. (a) Transfer curves for rGO memory devices after programming (−70 V) and erasing (+28 V) operations. (b) Program/erase speeds of rGO transistor memory devices. Threshold voltage ( ) shift was measured according to program/erase (P/E) operations (bias pulses of −70 V and +28 V) at different pulse widths. (c) The charge trapping effect at different program bias pulses measured using the transistor devices and rGO memory transistor devices. (d) Schematic band diagram of the memory device. The thickness of each layer is not scaled. (e) Endurance properties of rGO memory devices with respect to number of program (−70 V)/erase (+28 V) operations. (f) Data retention characteristics of rGO organic transistor memory devices. The dotted line is an extrapolation showing the long-term reliability of the rGO memory devices.

Loading

Article metrics loading...

/content/aip/journal/apl/101/23/10.1063/1.4769990
2012-12-07
2014-04-19

Abstract

A nonvolatile organic transistor memory device was developed using layer-by-layer assembly of 3-aminopropyltriethoxysilane (APTES) and solution-processed, reduced graphene oxide (rGO) as the charge trapping layer on flexible substrates. Reduction of graphene oxide and successful adsorption of the rGO on APTES-covered substrates were confirmed. The organic memory devices based on rGO exhibited reliable programmable memory operations, confirmed by program/erase operations, data retention, and endurance properties. These methods can potentially play a significant role in the fabrication of next-generation flexible nonvolatile memory devices based on graphene materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/23/1.4769990.html;jsessionid=34j8an7jpiqpq.x-aip-live-01?itemId=/content/aip/journal/apl/101/23/10.1063/1.4769990&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Reduced graphene oxide based flexible organic charge trap memory devices
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/23/10.1063/1.4769990
10.1063/1.4769990
SEARCH_EXPAND_ITEM