1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
A laser-driven nanosecond proton source for radiobiological studies
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/24/10.1063/1.4769372
1.
1. S. V. Bulanov and V. S. Khoroshkov, Plasma Phys. Rep. 28, 453 (2002).
http://dx.doi.org/10.1134/1.1478534
2.
2. C.-M. Ma, I. Veltchev, E. Fourkal, J. S. Li, W. Luo, J. Fan, T. Lin, and A. Pollack, Laser Phys. 16, 639 (2006).
http://dx.doi.org/10.1134/S1054660X06040165
3.
3. T. Tajima, D. Habs, and X. Yan, Rev. Accel. Sci. Technol. 2, 201 (2009).
http://dx.doi.org/10.1142/S1793626809000296
4.
4. R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster, M. S. Singh, S. C. Wilks, A. MacKinnon, A. Offenberger, D. M. Pennington, K. Yasuike, A. B. Langdon, B. F. Lasinski, J. Johnson, M. D. Perry, and E. M. Campbell, Phys. Rev. Lett. 85, 2945 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.2945
5.
5. A. J. Mackinnon, Y. Sentoku, P. K. Patel, D. W. Price, S. Hatchett, M. H. Key, C. Andersen, R. Snavely, and R. R. Freeman, Phys. Rev. Lett. 88, 215006 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.215006
6.
6. S. Fritzler, V. Malka, G. Grillon, J. P. Rousseau, F. Burgy, E. Lefebvre, E. d'Humières, P. McKenna, and K. W. D. Ledingham, Appl. Phys. Lett. 83, 3039 (2003).
http://dx.doi.org/10.1063/1.1616661
7.
7. S. D. Kraft, C. Richter, K. Zeil, M. Baumann, E. Beyreuther, S. Bock, M. Bussmann, T. E. Cowan, Y. Dammene, W. Enghardt, U. Helbig, L. Karsch, T. Kluge, L. Laschinsky, E. Lessmann, J. Metzkes, D. Naumburger, R. Sauerbrey, M. Schürer, M. Sobiella, J. Woithe, U. Schramm, and J. Pawelke, New J. Phys. 12, 085003 (2010).
http://dx.doi.org/10.1088/1367-2630/12/8/085003
8.
8. K. Ogura, M. Nishiuchi, A. S. Pirozhkov, T. Tanimoto, A. Sagisaka, T. Z. Esirkepov, M. Kando, T. Shizuma, T. Hayakawa, H. Kiriyama, T. Shimomura, S. Kondo, S. Kanazawa, Y. Nakai, H. Sasao, F. Sasao, Y. Fukuda, H. Sakaki, M. Kanasaki, A. Yogo, S. V. Bulanov, P. R. Bolton, and K. Kondo, Opt. Lett. 37, 2868 (2012).
http://dx.doi.org/10.1364/OL.37.002868
9.
9. T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, and T. Tajima, Phys. Rev. Lett. 92, 175003 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.175003
10.
10. A. Yogo, K. Sato, M. Nishikino, M. Mori, T. Teshima, H. Numasaki, M. Murakami, Y. Demizu, S. Akagi, S. Nagayama, K. Ogura, A. Sagisaka, S. Orimo, M. Nishiuchi, A. S. Pirozhkov, M. Ikegami, M. Tampo, H. Sakaki, M. Suzuki, I. Daito, Y. Oishi, H. Sugiyama, H. Kiriyama, H. Okada, S. Kanazawa, S. Kondo, T. Shimomura, Y. Nakai, M. Tanoue, H. Sasao, D. Wakai, P. R. Bolton, and H. Daido, Appl. Phys. Lett. 94, 181502 (2009).
http://dx.doi.org/10.1063/1.3126452
11.
11. A. Yogo, T. Maeda, T. Hori, H. Sakaki, K. Ogura, M. Nishiuchi, A. Sagisaka, H. Kiriyama, H. Okada, S. Kanazawa, T. Shimomura, Y. Nakai, M. Tanoue, F. Sasao, P. R. Bolton, M. Murakami, T. Nomura, S. Kawanishi, and K. Kondo, Appl. Phys. Lett. 98, 053701 (2011).
http://dx.doi.org/10.1063/1.3551623
12.
12. D. Doria, K. F. Kakolee, S. Kar, S. K. Litt, F. Fiorini, H. Ahmed, S. Green, J. C. G. Jeynes, J. Kavanagh, D. Kirby, K. J. Kirkby, C. L. Lewis, M. J. Merchant, G. Nersisyan, R. Prasad, K. M. Prise, G. Schettino, M. Zepf, and M. Borghesi, AIP Adv. 2, 011209 (2012).
http://dx.doi.org/10.1063/1.3699063
13.
13. V. Malka, J. Faure, and Y. A. Gauduel, Mutat. Res. 704, 142 (2010).
http://dx.doi.org/10.1016/j.mrrev.2010.01.006
14.
14. W. Ma, V. K. Liechtenstein, J. Szerypo, D. Jung, P. Hilz, B. M. Hegelich, H. J. Maier, J. Schreiber, and D. Habs, Nucl. Instrum. Methods Phys. Res. A 655, 53 (2011).
http://dx.doi.org/10.1016/j.nima.2011.06.019
15.
15. M. Schollmeier, S. Becker, M. Geißel, K. A. Flippo, A. Blažević, S. A. Gaillard, D. C. Gautier, F. Grüner, K. Harres, M. Kimmel, F. Nürnberg, P. Rambo, U. Schramm, J. Schreiber, J. Schütrumpf, J. Schwarz, N. A. Tahir, B. Atherton, D. Habs, B. M. Hegelich, and M. Roth, Phys. Rev. Lett. 101, 055004 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.055004
16.
16. S. Devic, Phys. Med. 27, 122 (2011).
http://dx.doi.org/10.1016/j.ejmp.2010.10.001
17.
17. E. P. Rogakou, D. R. Pilch, A. H. Orr, V. S. Ivanova, and W. M. Bonner, J. Biol. Chem. 273, 5858 (1998).
http://dx.doi.org/10.1074/jbc.273.10.5858
18.
18. O. Zlobinskaya, G. Dollinger, D. Michalski, V. Hable, C. Greubel, G. Du, G. Multhoff, B. Röper, M. Molls, and T. E. Schmid, Radiat. Environ. Biophys. 51, 23 (2012).
http://dx.doi.org/10.1007/s00411-011-0398-1
19.
19. N. A. P. Franken, R. Ten Cate, P. M. Krawczyk, J. Stap, J. Haveman, J. Aten, and G. W. Barendsen, Radiat. Oncol. 6, 64 (2011).
http://dx.doi.org/10.1186/1748-717X-6-64
20.
20. M. Belli, F. Cera, R. Cherubini, M. Dalla Vecchia, A. M. I. Haque, F. Ianzini, G. Moschini, O. Sapora, G. Simone, M. A. Tabocchini, and P. Tiveron, Int. J. Radiat. Biol. 74, 501 (1998).
http://dx.doi.org/10.1080/095530098141375
21.
21. T. E. Schmid, G. Dollinger, A. Hauptner, V. Hable, C. Greubel, S. Auer, A. A. Friedl, M. Molls, and B. Röper, Radiat. Res. 172, 567 (2009).
http://dx.doi.org/10.1667/RR1539.1
22.
22. S. Auer, V. Hable, C. Greubel, G. A. Drexler, T. E. Schmid, C. Belka, G. Dollinger, and A. A. Friedl, Radiat. Oncol. 6, 139 (2011).
http://dx.doi.org/10.1186/1748-717X-6-139
23.
23. See supplementary material at http://dx.doi.org/10.1063/1.4769372 for details on film dosimetry, proton transport simulations, and the irradiation setup and cell handling. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/24/10.1063/1.4769372
Loading
/content/aip/journal/apl/101/24/10.1063/1.4769372
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/24/10.1063/1.4769372
2012-12-10
2014-08-28

Abstract

Ion beams are relevant for radiobiological studies and for tumor therapy. In contrast to conventional accelerators, laser-driven ion acceleration offers a potentially more compact and cost-effective means of delivering ions for radiotherapy. Here, we show that by combining advanced acceleration using nanometer thin targets and beam transport, truly nanosecond quasi-monoenergetic proton bunches can be generated with a table-top laser system, delivering single shot doses up to 7 Gy to living cells. Although in their infancy, laser-ion accelerators allow studying fast radiobiological processes as demonstrated here by measurements of the relative biological effectiveness of nanosecond proton bunches in human tumor cells.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/24/1.4769372.html;jsessionid=3lkq1d9xoeu44.x-aip-live-06?itemId=/content/aip/journal/apl/101/24/10.1063/1.4769372&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A laser-driven nanosecond proton source for radiobiological studies
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/24/10.1063/1.4769372
10.1063/1.4769372
SEARCH_EXPAND_ITEM