1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
A laser-driven nanosecond proton source for radiobiological studies
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/24/10.1063/1.4769372
1.
1. S. V. Bulanov and V. S. Khoroshkov, Plasma Phys. Rep. 28, 453 (2002).
http://dx.doi.org/10.1134/1.1478534
2.
2. C.-M. Ma, I. Veltchev, E. Fourkal, J. S. Li, W. Luo, J. Fan, T. Lin, and A. Pollack, Laser Phys. 16, 639 (2006).
http://dx.doi.org/10.1134/S1054660X06040165
3.
3. T. Tajima, D. Habs, and X. Yan, Rev. Accel. Sci. Technol. 2, 201 (2009).
http://dx.doi.org/10.1142/S1793626809000296
4.
4. R. A. Snavely, M. H. Key, S. P. Hatchett, T. E. Cowan, M. Roth, T. W. Phillips, M. A. Stoyer, E. A. Henry, T. C. Sangster, M. S. Singh, S. C. Wilks, A. MacKinnon, A. Offenberger, D. M. Pennington, K. Yasuike, A. B. Langdon, B. F. Lasinski, J. Johnson, M. D. Perry, and E. M. Campbell, Phys. Rev. Lett. 85, 2945 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.2945
5.
5. A. J. Mackinnon, Y. Sentoku, P. K. Patel, D. W. Price, S. Hatchett, M. H. Key, C. Andersen, R. Snavely, and R. R. Freeman, Phys. Rev. Lett. 88, 215006 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.215006
6.
6. S. Fritzler, V. Malka, G. Grillon, J. P. Rousseau, F. Burgy, E. Lefebvre, E. d'Humières, P. McKenna, and K. W. D. Ledingham, Appl. Phys. Lett. 83, 3039 (2003).
http://dx.doi.org/10.1063/1.1616661
7.
7. S. D. Kraft, C. Richter, K. Zeil, M. Baumann, E. Beyreuther, S. Bock, M. Bussmann, T. E. Cowan, Y. Dammene, W. Enghardt, U. Helbig, L. Karsch, T. Kluge, L. Laschinsky, E. Lessmann, J. Metzkes, D. Naumburger, R. Sauerbrey, M. Schürer, M. Sobiella, J. Woithe, U. Schramm, and J. Pawelke, New J. Phys. 12, 085003 (2010).
http://dx.doi.org/10.1088/1367-2630/12/8/085003
8.
8. K. Ogura, M. Nishiuchi, A. S. Pirozhkov, T. Tanimoto, A. Sagisaka, T. Z. Esirkepov, M. Kando, T. Shizuma, T. Hayakawa, H. Kiriyama, T. Shimomura, S. Kondo, S. Kanazawa, Y. Nakai, H. Sasao, F. Sasao, Y. Fukuda, H. Sakaki, M. Kanasaki, A. Yogo, S. V. Bulanov, P. R. Bolton, and K. Kondo, Opt. Lett. 37, 2868 (2012).
http://dx.doi.org/10.1364/OL.37.002868
9.
9. T. Esirkepov, M. Borghesi, S. V. Bulanov, G. Mourou, and T. Tajima, Phys. Rev. Lett. 92, 175003 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.175003
10.
10. A. Yogo, K. Sato, M. Nishikino, M. Mori, T. Teshima, H. Numasaki, M. Murakami, Y. Demizu, S. Akagi, S. Nagayama, K. Ogura, A. Sagisaka, S. Orimo, M. Nishiuchi, A. S. Pirozhkov, M. Ikegami, M. Tampo, H. Sakaki, M. Suzuki, I. Daito, Y. Oishi, H. Sugiyama, H. Kiriyama, H. Okada, S. Kanazawa, S. Kondo, T. Shimomura, Y. Nakai, M. Tanoue, H. Sasao, D. Wakai, P. R. Bolton, and H. Daido, Appl. Phys. Lett. 94, 181502 (2009).
http://dx.doi.org/10.1063/1.3126452
11.
11. A. Yogo, T. Maeda, T. Hori, H. Sakaki, K. Ogura, M. Nishiuchi, A. Sagisaka, H. Kiriyama, H. Okada, S. Kanazawa, T. Shimomura, Y. Nakai, M. Tanoue, F. Sasao, P. R. Bolton, M. Murakami, T. Nomura, S. Kawanishi, and K. Kondo, Appl. Phys. Lett. 98, 053701 (2011).
http://dx.doi.org/10.1063/1.3551623
12.
12. D. Doria, K. F. Kakolee, S. Kar, S. K. Litt, F. Fiorini, H. Ahmed, S. Green, J. C. G. Jeynes, J. Kavanagh, D. Kirby, K. J. Kirkby, C. L. Lewis, M. J. Merchant, G. Nersisyan, R. Prasad, K. M. Prise, G. Schettino, M. Zepf, and M. Borghesi, AIP Adv. 2, 011209 (2012).
http://dx.doi.org/10.1063/1.3699063
13.
13. V. Malka, J. Faure, and Y. A. Gauduel, Mutat. Res. 704, 142 (2010).
http://dx.doi.org/10.1016/j.mrrev.2010.01.006
14.
14. W. Ma, V. K. Liechtenstein, J. Szerypo, D. Jung, P. Hilz, B. M. Hegelich, H. J. Maier, J. Schreiber, and D. Habs, Nucl. Instrum. Methods Phys. Res. A 655, 53 (2011).
http://dx.doi.org/10.1016/j.nima.2011.06.019
15.
15. M. Schollmeier, S. Becker, M. Geißel, K. A. Flippo, A. Blažević, S. A. Gaillard, D. C. Gautier, F. Grüner, K. Harres, M. Kimmel, F. Nürnberg, P. Rambo, U. Schramm, J. Schreiber, J. Schütrumpf, J. Schwarz, N. A. Tahir, B. Atherton, D. Habs, B. M. Hegelich, and M. Roth, Phys. Rev. Lett. 101, 055004 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.055004
16.
16. S. Devic, Phys. Med. 27, 122 (2011).
http://dx.doi.org/10.1016/j.ejmp.2010.10.001
17.
17. E. P. Rogakou, D. R. Pilch, A. H. Orr, V. S. Ivanova, and W. M. Bonner, J. Biol. Chem. 273, 5858 (1998).
http://dx.doi.org/10.1074/jbc.273.10.5858
18.
18. O. Zlobinskaya, G. Dollinger, D. Michalski, V. Hable, C. Greubel, G. Du, G. Multhoff, B. Röper, M. Molls, and T. E. Schmid, Radiat. Environ. Biophys. 51, 23 (2012).
http://dx.doi.org/10.1007/s00411-011-0398-1
19.
19. N. A. P. Franken, R. Ten Cate, P. M. Krawczyk, J. Stap, J. Haveman, J. Aten, and G. W. Barendsen, Radiat. Oncol. 6, 64 (2011).
http://dx.doi.org/10.1186/1748-717X-6-64
20.
20. M. Belli, F. Cera, R. Cherubini, M. Dalla Vecchia, A. M. I. Haque, F. Ianzini, G. Moschini, O. Sapora, G. Simone, M. A. Tabocchini, and P. Tiveron, Int. J. Radiat. Biol. 74, 501 (1998).
http://dx.doi.org/10.1080/095530098141375
21.
21. T. E. Schmid, G. Dollinger, A. Hauptner, V. Hable, C. Greubel, S. Auer, A. A. Friedl, M. Molls, and B. Röper, Radiat. Res. 172, 567 (2009).
http://dx.doi.org/10.1667/RR1539.1
22.
22. S. Auer, V. Hable, C. Greubel, G. A. Drexler, T. E. Schmid, C. Belka, G. Dollinger, and A. A. Friedl, Radiat. Oncol. 6, 139 (2011).
http://dx.doi.org/10.1186/1748-717X-6-139
23.
23. See supplementary material at http://dx.doi.org/10.1063/1.4769372 for details on film dosimetry, proton transport simulations, and the irradiation setup and cell handling. [Supplementary Material]
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/24/10.1063/1.4769372
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Proton numbers per msr for nm-thin DLC targets (red) and 5 μm thick titanium targets (blue) in the energy band 5-6 MeV as a function of the maximum energy Emax representing a measure for performance of the setup at the ATLAS laser.

Image of FIG. 2.

Click to view

FIG. 2.

Setup (to scale) of the laser-driven proton beamline. Protons accelerated from nm-thin foils are collimated by miniature quadrupoles in a small energy band. A dipole magnet deflects the beam downwards. Protons exit the vacuum chamber and enter the biological sample. The proton spectra are normalized to 1 for the design energy of 5.2 MeV.

Image of FIG. 3.

Click to view

FIG. 3.

Lateral dose distribution at the position of the cell sample measured with radiochromic film (maximum: 7.1 Gy in a single laser shot). Horizontal scale bar, 1 mm.

Image of FIG. 4.

Click to view

FIG. 4.

Registration of the dose distribution measured by radiochromic film with the microstructured grid on the Mylar foil holding the cells. The exact location of the region of interest shown in Fig. 5(a) is indicated. Horizontal scale bar, 100 μm.

Image of FIG. 5.

Click to view

FIG. 5.

Initial DNA damage in HeLa cells. (a) Sample exposed to a mean dose of 1.0 Gy and (b) corresponding unirradiated control. Foci of γ-H2AX (red) and cell nuclei (blue) are shown (3D microscopy, maximum intensity projections, background correction, contrast enhanced). The red vertical bars in (a) are part of the grid used for spatial registration (Fig. 4). Horizontal scale bars, 10 μm.

Image of FIG. 6.

Click to view

FIG. 6.

Mean number of γ-H2AX foci per cell as a function of dose for laser-driven protons and 200 kV X-rays. Each data point for protons contains ∼20 cells. Error bars in dose show the dose inhomogeneity (standard deviation) across the regions of interest used for evaluation.

Loading

Article metrics loading...

/content/aip/journal/apl/101/24/10.1063/1.4769372
2012-12-10
2014-04-21

Abstract

Ion beams are relevant for radiobiological studies and for tumor therapy. In contrast to conventional accelerators, laser-driven ion acceleration offers a potentially more compact and cost-effective means of delivering ions for radiotherapy. Here, we show that by combining advanced acceleration using nanometer thin targets and beam transport, truly nanosecond quasi-monoenergetic proton bunches can be generated with a table-top laser system, delivering single shot doses up to 7 Gy to living cells. Although in their infancy, laser-ion accelerators allow studying fast radiobiological processes as demonstrated here by measurements of the relative biological effectiveness of nanosecond proton bunches in human tumor cells.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/24/1.4769372.html;jsessionid=1c5r3g9519kma.x-aip-live-03?itemId=/content/aip/journal/apl/101/24/10.1063/1.4769372&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A laser-driven nanosecond proton source for radiobiological studies
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/24/10.1063/1.4769372
10.1063/1.4769372
SEARCH_EXPAND_ITEM