1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Quantum-secured imaging
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/24/10.1063/1.4770298
1.
1. M. Kolobov, Rev. Mod. Phys. 71, 1539 (1999).
http://dx.doi.org/10.1103/RevModPhys.71.1539
2.
2. L. Lugiato, A. Gatti, and E. Brambilla, J. Opt. B: Quantum Semiclassical Opt. 4, S176 (2002).
http://dx.doi.org/10.1088/1464-4266/4/3/372
3.
3. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, Phys. Rev. Lett. 85, 2733 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.2733
4.
4. V. Giovannetti, S. Lloyd, and L. Maccone, Science 306, 1330 (2004).
http://dx.doi.org/10.1126/science.1104149
5.
5. N. Spagnolo, C. Vitelli, V. Lucivero, V. Giovannetti, L. Maccone, and F. Sciarrino, Phys. Rev. Lett. 108, 233602 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.233602
6.
6. Z. Dutton, J. H. Shapiro, and S. Guha, J. Opt. Soc. Am. B 27, A63 (2010).
http://dx.doi.org/10.1364/JOSAB.27.000A63
7.
7. N. Treps, N. Grosse, W. Bowen, C. Fabre, H. A. Bachor, and P. Lam, Science 301, 940 (2003).
http://dx.doi.org/10.1126/science.1086489
8.
8. D. C. Schleher, Electronic Warfare in the Information Age (Artech House, 1999).
9.
9. S. J. Roome, Electron. Commun. Eng. J. 2, 147 (1990).
http://dx.doi.org/10.1049/ecej:19900035
10.
10. S. Kristoffersen and Ø. Thingsrud, in Proceedings of EUSAR (2004), Vol. 2, p. 871.
11.
11. T. S. Humble, R. S. Bennink, W. P. Grice, and I. J. Owens, Proc. SPIE 7342, 73420H (2009).
http://dx.doi.org/10.1117/12.820221
12.
12. P. M. Anisimov, D. J. Lum, S. Blane McCracken, H. Lee, and J. P. Dowling, New J. Phys. 12, 083012 (2010).
http://dx.doi.org/10.1088/1367-2630/12/8/083012
13.
13. C. Bennett and G. Brassard, in Proceedings of IEEE International Conference CSSP (1984), p. 175.
14.
14. B. Huttner and A. K. Ekert, J. Mod. Opt. 41, 2455 (1994).
http://dx.doi.org/10.1080/09500349414552301
15.
15. M. Bourennane, A. Karlsson, G. Bjork, N. Gisin, and N. Cerf, J. Phys. A 35, 10065 (2002).
http://dx.doi.org/10.1088/0305-4470/35/47/307
16.
16. C. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, J. Cryptology 5, 3 (1992).
http://dx.doi.org/10.1007/BF00191318
17.
17. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).
http://dx.doi.org/10.1103/RevModPhys.74.145
18.
18. C. Bennett, G. Brassard, S. Breidbart, and S. Wiesner, in Advances in Cryptology: Proceedings of Crypto '82 (1982), p. 267.
19.
19. P. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, and Y. Shih, Phys. Rev. Lett. 75, 4337 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.4337
20.
20. A. K. Jha, M. Malik, and R. W. Boyd, Phys. Rev. Lett. 101, 180405 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.180405
21.
21. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernandez, A. M. Wallace, and G. S. Buller, Appl. Opt. 48, 6241 (2009).
http://dx.doi.org/10.1364/AO.48.006241
22.
22. G. Howland, P. B. Dixon, and J. C. Howell, Appl. Opt. 50, 5917 (2011).
http://dx.doi.org/10.1364/AO.50.005917
23.
23. G. Brassard, N. Lütkenhaus, T. Mor, and B. Sanders, Phys. Rev. Lett. 85, 1330 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.1330
24.
24. Y. Zhao, B. Qi, X. Ma, H.-K. Lo, and L. Qian, Phys. Rev. Lett. 96, 070502 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.070502
25.
25. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Nature 390, 575 (1997).
http://dx.doi.org/10.1038/37539
26.
26. J. B. Pendry, Science 312, 1780 (2006).
http://dx.doi.org/10.1126/science.1125907
27.
27. M. Bigelow, N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
http://dx.doi.org/10.1126/science.1084429
28.
28. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, Appl. Phys. Lett. 96, 161102 (2010).
http://dx.doi.org/10.1063/1.3385293
29.
29. F. Steinlechner, P. Trojek, M. Jofre, H. Weier, D. Perez, T. Jennewein, R. Ursin, J. Rarity, M. W. Mitchell, J. P. Torres, H. Weinfurter, and V. Pruneri, Opt. Express 20, 9640 (2012).
http://dx.doi.org/10.1364/OE.20.009640
30.
30. M. Malik, M. N. O'Sullivan, B. Rodenburg, M. Mirhosseini, J. Leach, M. P. J. Lavery, M. J. Padgett, and R. W. Boyd, Opt. Express 20, 13195 (2012).
http://dx.doi.org/10.1364/OE.20.013195
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/24/10.1063/1.4770298
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

A sketch showing the fundamental difference between the QKD and quantum-secured imaging (QSI) protocols. In QKD, a spatially separated sender and receiver use quantum mechanical principles to securely share information. In QSI, a collocated sender and receiver use shared information to securely query an object.

Image of FIG. 2.

Click to view

FIG. 2.

Schematic of our quantum-secured imaging experiment. Polarized single-photon pulses from a HeNe laser are reflected from the object and imaged onto an EMCCD through an IF. A HWP and a PBS are used to make the appropriate polarization basis measurement. Four images corresponding to the four measured polarizations are obtained. The angle of reflection is exaggerated in the figure for clarity but is less than in reality. The object consists of a reflective stealth aircraft silhouette.

Image of FIG. 3.

Click to view

FIG. 3.

Laboratory demonstration of quantum-secured imaging. (a) When there is no jamming attack, the received image faithfully reproduces the actual object, which is shown in the inset. (b) In the presence of an intercept-resend jamming attack, the received image is the “spoof” image of a bird. However, the imaging system can always detect the presence of the jamming attack, because of the large error rate in the received polarization. In (a), the error rate is 0.84%, while in (b) it is 50.44%. A detected error rate of indicates that the image received has been compromised.

Image of FIG. 4.

Click to view

FIG. 4.

The received image is comprised of four different images corresponding to the four measured polarizations (H, V, D, and A). (a) When there is no jamming attack, the four images have a near-zero error in the received polarization. (b) In the presence of an intercept-resend jamming attack in which the object resends only H-polarized photons, the four images have considerable error in the received polarization. This measured error allows Alice and Bob to determine that the imaging system was being actively jammed. There is no V image obtained in this case as the measurement of an photon in the HV basis leads to no V signal.

Image of FIG. 5.

Click to view

FIG. 5.

Schematic for a proposed secure time-of-flight experiment, based on the entanglement-based Ekert QKD protocol. Polarization-entangled photon pairs generated in a pair of crossed PPKTP crystals are used to measure the distance to an object. Security against an intercept-resend jamming attack is checked by carrying out a test for a CHSH Bell inequality with measurements in appropriate polarization bases using PC and PBS.

Loading

Article metrics loading...

/content/aip/journal/apl/101/24/10.1063/1.4770298
2012-12-11
2014-04-17

Abstract

We have built an imaging system that uses a photon's position or time-of-flightinformation to image an object, while using the photon's polarization for security. This ability allows us to obtain an image which is secure against an attack in which the object being imaged intercepts and resends the imaging photons with modified information. Popularly known as “jamming,” this type of attack is commonly directed at active imaging systems such as radar. In order to jam our imaging system, the object must disturb the delicate quantum state of the imaging photons, thus introducing statistical errors that reveal its activity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/24/1.4770298.html;jsessionid=1mcvs0314tetj.x-aip-live-01?itemId=/content/aip/journal/apl/101/24/10.1063/1.4770298&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Quantum-secured imaging
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/24/10.1063/1.4770298
10.1063/1.4770298
SEARCH_EXPAND_ITEM