1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Efficiency enhancement in mesogenic-phthalocyanine-based solar cells with processing additives
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/26/10.1063/1.4773519
1.
1. C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).
http://dx.doi.org/10.1063/1.96937
2.
2. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).
http://dx.doi.org/10.1126/science.270.5243.1789
3.
3. Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Mater. 22, E135 (2010).
http://dx.doi.org/10.1002/adma.200903528
4.
4. Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, and A. J. Heeger, Nat. Mater. 11, 44 (2012).
http://dx.doi.org/10.1038/nmat3160
5.
5. G. Zhao, Y. He, and Y. Li, Adv. Mater. 22, 4355 (2010).
http://dx.doi.org/10.1002/adma.201001339
6.
6. M. Lenes, G. A. H. Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C. Hummelen, and P. W. M. Blom, Adv. Mater. 20, 2116 (2008).
http://dx.doi.org/10.1002/adma.200702438
7.
7. Y. Miyake, Y. Shiraiwa, K. Okada, H. Monobe, T. Hori, N. Yamasaki, H. Yoshida, M. J. Cook, A. Fujii, M. Ozaki, and Y. Shimizu, Appl. Phys. Express 4, 021604 (2011).
http://dx.doi.org/10.1143/APEX.4.021604
8.
8. T. Hori, Y. Miyake, N. Yamasaki, H. Yoshida, A. Fujii, Y. Shimizu, and M. Ozaki, Appl. Phys. Express 3, 101602 (2010).
http://dx.doi.org/10.1143/APEX.3.101602
9.
9. T. Hori, N. Fukuoka, T. Masuda, Y. Miyake, H. Yoshida, A. Fujii, Y. Shimizu, and M. Ozaki, Sol. Energy Mater. Sol. Cells 95, 3087 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.06.039
10.
10. J. C. Swarts, E. H. G. Langner, N. Krokeide-Hove, and M. J. Cook, J. Mater. Chem. 11, 434 (2001).
http://dx.doi.org/10.1039/b006123i
11.
11. Q. D. Dao, T. Hori, T. Masuda, K. Fukumura, T. Kamikado, F. Nekelson, A. Fujii, Y. Shimizu, and M. Ozaki, Jpn. J. Appl. Phys. 52, 012301 (2013).
12.
12. J. Peet, C. Soci, R. C. Coffin, T. Q. Nguyen, A. Mikhailovsky, D. Moses, and G. C. Bazana, Appl. Phys. Lett. 89, 252105 (2006).
http://dx.doi.org/10.1063/1.2408661
13.
13. M. Sundberg, O. Inganäs, S. Stafström, G. Gustafsson, and B. Sjögren, Solid State Commun. 1, 435 (1989).
http://dx.doi.org/10.1016/0038-1098(89)90087-2
14.
14. F. Nekelson, K. Miyamoto, D. Q. Duy, T. Hori, H. Yoshida, A. Fujii, M. Ozaki, and Y. Shimizu, Chem. Mater.Thermal and Electronic Properties of Non-Peripheral Octahexylphthalocyanine/PCBM Binary Mixtures for Bulk Heterojunction Organic Solar Cell”. (unpublished).
15.
15. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, Nat. Mater. 6, 497 (2007).
http://dx.doi.org/10.1038/nmat1928
16.
16. J. K. Lee, W. L. Ma, C. J. Brabe, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, and A. J. Heeger, J. Am. Chem. Soc. 130, 3619 (2008).
http://dx.doi.org/10.1021/ja710079w
17.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/26/10.1063/1.4773519
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Molecular structures of C6PcH, PCBM, and DIO and energy level diagrams of the solar cell in this study.

Image of FIG. 2.

Click to view

FIG. 2.

Absorption spectra of the C6PcH and PCBM composite thin films with (empty circles) and without (filled circles) DIO and the pristine C6PcH (filled triangles).

Image of FIG. 3.

Click to view

FIG. 3.

J-V characteristics (a) and EQE spectra (b) of cells with DIO (empty symbols) and without DIO (filled symbols) in the various solvents: chloroform (triangles), TCE (circles), and toluene (rectangles).

Image of FIG. 4.

Click to view

FIG. 4.

AFM images of the C6PcH:PCBM thin films without DIO (a) and with DIO (b)–(d) in the various solvents: chloroform (a) and (b), TCE (c), and toluene (d).

Image of FIG. 5.

Click to view

FIG. 5.

XRD patterns of the C6PcH:PCBM thin films with and without DIO in different solvents.

Tables

Generic image for table

Click to view

Table I.

Characteristics of cells with and without DIO in different solvents.

Loading

Article metrics loading...

/content/aip/journal/apl/101/26/10.1063/1.4773519
2012-12-27
2014-04-24

Abstract

Bulk heterojunction (BHJ) solar cells, fabricated by spin casting processes, with phase-separated small molecules including a phthalocyanine derivative, 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C6PcH), and a fullerene derivative, 1-(3-methoxy-carbonyl)-propyl-1-1-phenyl-(6,6)C61 (PCBM), have been demonstrated to have a power conversion efficiency exceeding 4.1%. The C6PcH:PCBM BHJ surface morphology and the phase separation have been controlled by utilizing processing additives in various solvents. The effects of the processing additives on the crystallization of the discotic C6PcH columns in hexagonal structures have been discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/26/1.4773519.html;jsessionid=68dkof0ohop42.x-aip-live-01?itemId=/content/aip/journal/apl/101/26/10.1063/1.4773519&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Efficiency enhancement in mesogenic-phthalocyanine-based solar cells with processing additives
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/26/10.1063/1.4773519
10.1063/1.4773519
SEARCH_EXPAND_ITEM