1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Top illuminated inverted organic ultraviolet photosensors with single layer graphene electrodes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/3/10.1063/1.4733299
1.
1. D. Birtalan and W. Nunley, Optoelectronics: Infrared-Visible-Ultraviolet Devices and Applications, 2nd ed. (CRC, Boca Raton, 2009).
2.
2. X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C.-L. Shieh, B. Nilsson, and A. J. Heeger, Science 325, 1665 (2009).
http://dx.doi.org/10.1126/science.1176706
3.
3. S.-H. Wu, W. L. Li, B. Chu, Z. Sheng Su, F. Zhang, and C. S. Lee, Appl. Phys. Lett. 99, 023305 (2011).
http://dx.doi.org/10.1063/1.3610993
4.
4. R. W. Waynant and M. N. Ediger, Electro-Optics Handbook, 2nd ed. (McGraw-Hill, New York, 2000).
5.
5. F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, J. Mater. Chem. 19, 5442 (2009).
http://dx.doi.org/10.1039/b823001c
6.
6. L.-M. Chen, Z. Hong, G. Li, and Y. Yang, Adv. Mater. 21, 1434 (2009).
http://dx.doi.org/10.1002/adma.200802854
7.
7. T. N. Ng, W. S. Wong, M. L. Chabinyc, and R. A. Street, Appl. Phys. Lett. 92, 213303 (2008).
http://dx.doi.org/10.1063/1.2937018
8.
8. M. Wu, K. Pangal, J. C. Sturm, and S. Wagner, Appl. Phys. Lett. 75, 2244 (1999).
http://dx.doi.org/10.1063/1.124978
9.
9. X. Tong, B. E. Lassiter, and S. R. Forrest, Org. Electron. 11, 705 (2010).
http://dx.doi.org/10.1016/j.orgel.2009.12.024
10.
10. D. Baierl, B. Fabel, P. Gabos, L. Pancheri, P. Lugli, and G. Scarpa, Org. Electron. 11, 1199 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.04.023
11.
11. J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, Nano Lett. 10, 1276 (2010).
http://dx.doi.org/10.1021/nl903892x
12.
12. D. Baierl, B. Fabel, P. Lugli, and G. Scarpa, Org. Electron. 12, 1669 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.06.021
13.
13. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009).
http://dx.doi.org/10.1126/science.1171245
14.
14. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010).
http://dx.doi.org/10.1038/nnano.2010.132
15.
15. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, Nat. Nanotechnol. 3, 563 (2008).
http://dx.doi.org/10.1038/nnano.2008.215
16.
16. U. Stöberl, U. Wurstbauer, W. Wegscheider, D. Weiss, and J. Eroms, Appl. Phys. Lett. 93, 051906 (2008).
http://dx.doi.org/10.1063/1.2968310
17.
17. V. C. Tung, L.-M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, Nano Lett. 9, 1949 (2009).
http://dx.doi.org/10.1021/nl9001525
18.
18. J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Nano Lett. 8, 2458 (2008).
http://dx.doi.org/10.1021/nl801457b
19.
19. J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, Appl. Phys. Lett. 92, 263302 (2008).
http://dx.doi.org/10.1063/1.2924771
20.
20. Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, Appl. Phys. Lett. 95, 063302 (2009).
http://dx.doi.org/10.1063/1.3204698
21.
21. L. G. D Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, ACS Nano 4, 2865 (2010).
http://dx.doi.org/10.1021/nn901587x
22.
22. G. Jo, S.-I. Na, S.-H. Oh, S. Lee, T.-S. Kim, G. Wang, M. Choe, W. Park, J. Yoon, D.-Y. Kim, Y. H. Kahng, and T. Lee, Appl. Phys. Lett. 97, 213301 (2010).
http://dx.doi.org/10.1063/1.3514551
23.
23. G. Greczynski, T. Kugler, and W. Salaneck, Thin Solid Films 354, 129 (1999).
http://dx.doi.org/10.1016/S0040-6090(99)00422-8
24.
24. K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau, K. H. Low, H. F. Chow, Z. Q. Gao, W. L. Yeung, and C. C. Chang, Appl. Phys. Lett. 80, 2788 (2002).
http://dx.doi.org/10.1063/1.1469220
25.
25. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nature Mater. 4, 864 (2005).
http://dx.doi.org/10.1038/nmat1500
26.
26. W. Liu, H. Li, C. Xu, Y. Khatami, and K. Banerjee, Carbon 49, 4122 (2011).
http://dx.doi.org/10.1016/j.carbon.2011.05.047
27.
27. M. Krögera, S. Hamwib, J. Meyerb, T. Riedlb, W. Kowalskyb, and A. Kahn, Org. Electron. 10, 932 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.05.007
28.
28. X. Wang, L. Zhi, and K. Müllen, Nano Lett. 8, 323 (2008).
http://dx.doi.org/10.1021/nl072838r
29.
29. M. Cox, A. Gorodetsky, B. Kim, K. S. Kim, Z. Jia, P. Kim, C. Nuckolls, and I. Kymissis, Appl. Phys. Lett. 98, 123303 (2011).
http://dx.doi.org/10.1063/1.3569601
30.
30. R. C. I. MacKenzie, T. Kirchartz, G. F. A. Dibb, and J. Nelson, J. Phys. Chem. C 115, 9806 (2011).
http://dx.doi.org/10.1021/jp200234m
31.
31. M. Razeghi and A. Rogalski, J. Appl. Phys. 79, 7433 (1996).
http://dx.doi.org/10.1063/1.362677
32.
32. G. Yu, J. Wang, J. McElvain, and A. J. Heeger, Adv. Mater. 10, 1431 (1998).
http://dx.doi.org/10.1002/(SICI)1521-4095(199812)10:17<1431::AID-ADMA1431>3.0.CO;2-4
33.
33. D. M. Brown, E. T. Downey, M. Ghezzo, J. W. Kretchmer, R. J. Saia, Y. S. Liu, J. A. Edmond, G. Gati, J. M. Pimbley, and W. E. Schneider, IEEE Trans. Electron Devices 40, 325 (1993).
http://dx.doi.org/10.1109/16.182509
34.
34.See supplementary material at http://dx.doi.org/10.1063/1.4733299 for UV-Vis transmittance spectra of the electrodes and current-voltage characteristics of the devices under AM 1.5 simulated solar illumination. [Supplementary Material]
35.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/3/10.1063/1.4733299
Loading
/content/aip/journal/apl/101/3/10.1063/1.4733299
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/3/10.1063/1.4733299
2012-07-16
2014-10-01

Abstract

Inverted, top-illuminated organic photodiodes are demonstrated using transparent electrodes including single layer graphene (SLG) and thin gold or silver with poly(3-hexylthiophene) and 1 -(3-methoxycarboyl)-propyl-1-phenyl-(6,6)C as active layer. The devices are free of both indium-tin-oxide and poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate). The maximum solar power conversion efficiencies were 0.3% for SLG due to its series resistance and ∼2% for gold and silver. The organic photodiodes with SLG electrodes had good external quantum efficiency at incident illumination less than 10 mW/cm2 and better performance than gold and silver at wavelengths below 300 nm making them attractive for ultraviolet photosensors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/3/1.4733299.html;jsessionid=6sn5scusd79t.x-aip-live-03?itemId=/content/aip/journal/apl/101/3/10.1063/1.4733299&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Top illuminated inverted organic ultraviolet photosensors with single layer graphene electrodes
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/3/10.1063/1.4733299
10.1063/1.4733299
SEARCH_EXPAND_ITEM