1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/3/10.1063/1.4734240
1.
1. R. F. Service, Science 319, 718 (2008).
http://dx.doi.org/10.1126/science.319.5864.718
2.
2. R. G. Little and M. J. Nowlan, Prog. Photovolt. 5, 309 (1997).
http://dx.doi.org/10.1002/(SICI)1099-159X(199709/10)5:5<309::AID-PIP180>3.0.CO;2-X
3.
3. V. M. Fthenakis and H. C. Kim, Sol. Energy 85, 1609 (2010).
http://dx.doi.org/10.1016/j.solener.2009.10.002
4.
4. M. J. Sailor, E. J. Ginsburg, C. B. Gorman, A. Kumar, R. H. Grubbs, and N. S. Lewis, Science 249, 1146 (1990).
http://dx.doi.org/10.1126/science.249.4973.1146
5.
5. A. A. D. T. Adikaari, D. M. N. M. Dissanayake, and S. R. P. Silva, IEEE. J. Sel. Top. Quantum 16, 1595 (2010).
http://dx.doi.org/10.1109/JSTQE.2010.2040464
6.
6. J. W.P. Hsu and M. T. Lloyd, MRS Bull. 35, 422 (2010).
http://dx.doi.org/10.1557/mrs2010.579
7.
7. F. Zhang, B. Sun, T. Song, X. Zhu, and S. T. Lee, Chem. Mater. 23, 2084 (2011).
http://dx.doi.org/10.1021/cm103221a
8.
8. S. C. Shiu, J. J. Chao, S. C. Hung, C. L. Yeh, and C. F. Lin, Chem. Mater. 22, 3108 (2010).
http://dx.doi.org/10.1021/cm100086x
9.
9. J. C. Nolasco, R. Cabré, J. Ferré-Borrull, L. F. Marsal, M. Estrada, and J. Pallarès, J. Appl. Phys. 107, 044505 (2010).
http://dx.doi.org/10.1063/1.3296294
10.
10. L. He, Rusli, C. Jiang, H. Wang, and D. Lai, IEEE Electron Device Lett. 32, 1406 (2011).
http://dx.doi.org/10.1109/LED.2011.2162222
11.
11. X. Shen, B. Sun, D. Liu, and S. T. Lee, J. Am. Chem. Soc. 133, 19408 (2011).
http://dx.doi.org/10.1021/ja205703c
12.
12. L. He, C. Jiang, Rusli, D. Lai, and H. Wang, Appl. Phys. Lett. 99, 021104 (2011).
http://dx.doi.org/10.1063/1.3610461
13.
13. J. Cuiffi, T. Benanti, W. J. Nam, and S. Fonash, Appl. Phys. Lett. 96, 143307 (2010).
http://dx.doi.org/10.1063/1.3383232
14.
14. Y. Liu, Y. Sun, and A. Rockett, Sol. Energy Mater. Sol. Cells 98, 124 (2012).
http://dx.doi.org/10.1016/j.solmat.2011.10.010
15.
15. M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, J. Heeger, and C. J. Brabec, Adv. Mater. 18, 789 (2006).
http://dx.doi.org/10.1002/adma.200501717
16.
16. C. Waldauff, P. Schilinsky, J. Hauch, and C. J. Brabec, Thin Solid Films 451, 503 (2004).
http://dx.doi.org/10.1016/j.tsf.2003.11.043
17.
17. P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, Adv. Mater. 19, 1551 (2007).
http://dx.doi.org/10.1002/adma.200601093
18.
18. C. Goh, S. R. Scully, and M. D. McGehee, J. Appl. Phys. 101, 114503 (2007).
http://dx.doi.org/10.1063/1.2737977
19.
19. S. Avasthi, Y. Qi, G. K. Vertelov, J. Schwartz, A. Kahn, and J. C. Sturm, Appl. Phys. Lett. 96, 222109 (2010).
http://dx.doi.org/10.1063/1.3429585
20.
20. A. Das, V. Meemongkolkiat, D. S. Kim, S. Ramanathan, and A. Rohatgi, IEEE Trans. Electron Devices 57, 2462 (2010).
http://dx.doi.org/10.1109/TED.2010.2057010
21.
21. J. Y. Kim, M. H. Kwon, Y. K. Min, S. Kwon, and D. W. Ihm, Adv. Mater. 19, 3501 (2007).
http://dx.doi.org/10.1002/adma.200602163
22.
22. I. Ding, N. Tétreault, J. Brillet, B. E. Hardin, E. H. Smith, S. J. Rosenthal, F. Sauvage, M. Grätzel, and M. D. McGehee, Adv. Funct. Mater. 19, 2431 (2009).
http://dx.doi.org/10.1002/adfm.200900541
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.4734240 for the methodology and results of optical modeling, simulation parameters, and the UPS spectrum of PEDOT:PSS. [Supplementary Material]
24.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/3/10.1063/1.4734240
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

SEM of (a) PEDOT:PSS/Si solar cells with spin rates of 1000, (b) 4000, (c) 6000, and (d) 8000 rpm, respectively. The PEDOT:PSS thin film is colored in teal for eye guide. The polymer film spun-cast at 8000 rpm shows an excellent coverage onto the pyramidal surface. The inset shows the PEDOT:PSS layer with a tapered thickness of approximately 40 nm in the middle.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Measured and calculated current density-voltage characteristics of the micro-textured and planar hybrid cells under a simulated one-sun AM1.5G illumination. (b) Measured EQE and reflectance spectra and the extracted IQE spectrum of a micro-textured hybrid cell fabricated with 8000 rpm. The dotted line indicates a fitted IQE curve.

Image of FIG. 3.

Click to view

FIG. 3.

The calculated photovoltaic characteristics of hybrid solar cells as a function of (a) the interface defect density of states, (b) bulk defect density of states in PEDOT:PSS, (c) doping concentration, and (d) the back surface recombination velocity based on the fitted device model shown in Fig. 2 . The purple and pink lines represent the simulation baseline for the fabricated device and for cells with improved material properties to study the effect of band alignments, respectively.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Efficiency map of hybrid organic/n-Si solar cells as a function of the electron affinity and bandgap. The yellow symbol denotes the properties of PEDOT:PSS, which indicates a projected power conversion efficiency over 20%. (b)–(d) The corresponding band alignment for locations marked by yellow, green, and red star-symbols in the efficiency map, respectively.

Tables

Generic image for table

Click to view

Table I.

Averaged photovoltaic characteristics of micro-textured hybrid solar cells fabricated with various spin rates and the planar reference cells with 8000 rpm.

Loading

Article metrics loading...

/content/aip/journal/apl/101/3/10.1063/1.4734240
2012-07-16
2014-04-20

Abstract

In this work, hybrid heterojunction solar cells are demonstrated based on a conjugate polymer poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) directly spun-cast on micro-textured n-type crystalline silicon wafers. The fabrication conditions suggest that the organic coverage on the micro-textured surface is excellent and key to achieve high efficiency, leading to an average power conversion efficiency of 9.84%. A one-dimensional drift-diffusion model is then developed based on fitting the device characteristics with experimentally determined PEDOT:PSS parameters and projects an ultimate efficiency above 20% for organic/inorganic hybrid photovoltaics. The simulation results reveal the impacts of defect densities, back surface recombination, doping concentration, and band alignment.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/3/1.4734240.html;jsessionid=phfoatm5buu9.x-aip-live-01?itemId=/content/aip/journal/apl/101/3/10.1063/1.4734240&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/3/10.1063/1.4734240
10.1063/1.4734240
SEARCH_EXPAND_ITEM