1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/4/10.1063/1.4738989
1.
1. D. F. McGuigan, C. C. Lam, R. Q. Gram, A. W. Hoffman, D. H. Douglas, and H. W. Gutche, J. Low Temp. Phys. 30, 621 (1978).
http://dx.doi.org/10.1007/BF00116202
2.
2. S. Rowan, J. Hough, and D. R. M. Crooks, Phys. Lett. A 347, 25 (2005).
http://dx.doi.org/10.1016/j.physleta.2005.06.055
3.
3. R. Nawrodt, S. Rowan, J. Hough, M. Punturo, F. Ricci, and J.-Y. Vinet, Gen. Relativ. Gravit. 43, 593 (2011).
http://dx.doi.org/10.1007/s10714-010-1066-5
4.
4. S. Hild, M. Abernathy, F. Acernese, P. Amaro-Seoane, N. Andersson, K. Arun, F. Barone, B. Barr, M. Barsuglia, M. Beker et al., Class. Quantum Grav. 28, 094013 (2011).
http://dx.doi.org/10.1088/0264-9381/28/9/094013
5.
5. J. P. Richard and J. J. Hamilton, Rev. Sci. Instrum. 62, 2375 (1991).
http://dx.doi.org/10.1063/1.1142249
6.
6. V. B. Braginsky, M. L. Gorodetsky, and S. P. Vyatchanin, Phys. Lett. A 271, 303 (2000).
http://dx.doi.org/10.1016/S0375-9601(00)00389-3
7.
7. D. Heinert, A. G. Gurkovsky, R. Nawrodt, S. P. Vyatchanin, and K. Yamamoto, Phys. Rev. D 84, 062001 (2011).
http://dx.doi.org/10.1103/PhysRevD.84.062001
8.
8. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, Appl. Phys. Lett. 85, 3693 (2004).
http://dx.doi.org/10.1063/1.1811378
9.
9. M. Ghulinyan, D. Navarro-Urrios, A. Pitanti, A. Lui, G. Pucker, and L. Pavesi, Opt. Express 16, 13218 (2008).
http://dx.doi.org/10.1364/OE.16.013218
10.
10. A. B. Matsko, A. A. Savchenkov, N. Yu, and L. Maleki, J. Opt. Soc. Am. B 24, 1324 (2007).
http://dx.doi.org/10.1364/JOSAB.24.001324
11.
11. B. J. Frey, D. B. Leviton, and T. J. Madison, e-print arXiv:physics/0606168v1.
12.
12. G. Cocorullo, F. G. D. Corte, and I. Rendina, Appl. Phys. Lett. 74, 3338 (1999).
http://dx.doi.org/10.1063/1.123337
13.
13. T. Tomaru, T. Suzuki, S. Miyoki, T. Uchiyama, C. T. Taylor, A. Yamamoto, T. Shintomi, M. Ohashi, and K. Kuroda, Class. Quantum Grav. 19, 20452049 (2002).
http://dx.doi.org/10.1088/0264-9381/19/7/412
14.
14. K. G. Lyon, G. L. Salinger, C. A. Swenson, and G. K. White, J. Appl. Phys. 48, 865 (1977).
http://dx.doi.org/10.1063/1.323747
15.
15. S. Hild, H. Lück, W. Winkler, K. Strain, H. Grote, J. Smith, M. Malec, M. Hewitson, B. Willke, J. Hough, and K. Danzmann, Appl. Opt. 45, 7269 (2006).
http://dx.doi.org/10.1364/AO.45.007269
16.
16. D. B. Leviton and B. J. Frey, e-print arXiv:0805.0091v1.
17.
17. O. L. Anderson and H. E. Bömmel, J. Am. Ceram. Soc. 38, 125 (1955).
http://dx.doi.org/10.1111/j.1151-2916.1955.tb14914.x
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/4/10.1063/1.4738989
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Measured intensity change of the light reflected from a 6 mm long silicon Fabry-Perot etalon due to a temperature change from 295 K to 300 K. The reflected intensity was normalized to the incoming light power .

Image of FIG. 2.

Click to view

FIG. 2.

Inside the continuous helium flow cryostat the sample (1) is placed in the probe chamber (2) which is surrounded by vacuum in the cryostat (3)to provide a thermal insulation against room temperature. A cooling coil (4) allows the heat extraction by an adjustable liquid helium flow. Directly attached to the sample is a calibrated temperature sensor (5) as well as an electric heater (6). The beam from the 1550 nm laser source (7) is split (8) into two parts. One of them is detected by a reference photo diode (9) and the other one points in the direction of the sample. Two additional photo diodes measure the transmitted (10) and the reflected (11) light intensity.

Image of FIG. 3.

Click to view

FIG. 3.

Fit of the low temperature data used to extract the thermo-optic coefficient (red dots) underlying the extraction of the thermo-optic parameter of silicon. The reflected intensity was normalized using the incoming laser power .

Image of FIG. 4.

Click to view

FIG. 4.

Results for the thermo-optic coefficient of silicon at 1550 nm in the temperature range from 5 K to 300 K. The inset gives a detailed overview of the low temperature part of the curve. The comparison with values obtained by Frey et al. 11 reveals an excellent agreement.

Image of FIG. 5.

Click to view

FIG. 5.

Comparison of the thermo-optic coefficient of fused silica (Corning 7980, see Ref. 16) and silicon as a function of temperature.

Loading

Article metrics loading...

/content/aip/journal/apl/101/4/10.1063/1.4738989
2012-07-24
2014-04-20

Abstract

The thermo-optic coefficient of silicon was measured at 1550 nm in the wide temperature range from 5 K to 300 K. For this purpose an interferometric measurement scheme was applied using the silicon sample as a Fabry-Perotetalon. The high resolution of this setup revealed a thermo-optic coefficient as low as at 5 K. The presented results show an excellent agreement with former measurements above 30 K including a value of at 300 K.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/4/1.4738989.html;jsessionid=220jqnxsqbfkg.x-aip-live-06?itemId=/content/aip/journal/apl/101/4/10.1063/1.4738989&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Thermo-optic coefficient of silicon at 1550 nm and cryogenic temperatures
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/4/10.1063/1.4738989
10.1063/1.4738989
SEARCH_EXPAND_ITEM