1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Taking whispering gallery-mode single virus detection and sizing to the limit
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/4/10.1063/1.4739473
1.
1. C. B. Reimer, R. S. Baker, T. E. Newlin, and M. L. Havens, Science 152, 1379 (1966).
http://dx.doi.org/10.1126/science.152.3727.1379
2.
2. D. A. Kuzmanovic, I. Elashvili, C. Wick, C. O’Connell, and S. Krueger, Structure 11, 1339 (2003).
http://dx.doi.org/10.1016/j.str.2003.09.021
3.
3. S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, and I. Teraoka, Faraday Discuss. 137, 65 (2008).
http://dx.doi.org/10.1039/b702920a
4.
4. S. I. Shopova, R. Rajmangal, S. Holler, and S. Arnold, Appl. Phys. Lett. 98, 243104 (2011).
http://dx.doi.org/10.1063/1.3599584
5.
5. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, Opt. Lett. 28, 272 (2003).
http://dx.doi.org/10.1364/OL.28.000272
6.
6. F. Vollmer, S. Arnold, and D. Keng, Proc. Natl. Acad. Sci. U.S.A. 105, 20701 (2008).
http://dx.doi.org/10.1073/pnas.0808988106
7.
7. R. D. Averitt, S. L. Westcott, and N. J. Halas, J. Opt. Soc. Am. B 16, 1824 (1999).
http://dx.doi.org/10.1364/JOSAB.16.001824
8.
8. S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, Opt. Express 17, 6230 (2009).
http://dx.doi.org/10.1364/OE.17.006230
9.
9. U. Martinez, J. F. Jerratsch, N. Nilius, L. Giordano, G. Pacchioni, and H.-J. Freund, Phys. Rev. Lett. 103, 056801 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.056801
10.
10. L. Novotny, R. X. Bian, and X. S. Xie, Phys. Rev. Lett. 79, 645 (1997).
http://dx.doi.org/10.1103/PhysRevLett.79.645
11.
11. T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, Proc. Natl. Acad. Sci. U.S.A. 108, 5976 (2011).
http://dx.doi.org/10.1073/pnas.1017962108
12.
12. J. D. Swaim, J. Knittel, and W. P. Bowen, Appl. Phys. Lett. 99, 243109 (2011).
http://dx.doi.org/10.1063/1.3669398
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/4/10.1063/1.4739473
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Enhancement in the WGM-hybrid wavelength shift calculated quasi-statically for an infinitesimally small particle binding at T on a gold nanoshell 50 nm in diameter having thicknesses ranging from the full radius (i.e., solid gold) down to 3.75 nm.

Image of FIG. 2.

Click to view

FIG. 2.

Microfludic WGM biosensor with the image of an assembled WGM-h resonator.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Shift of resonance wavelength above 780.674 nm of a WGM resonator R = 45 μm having a gold nanoshell attached at its equator due to the adsorption of MS2 viruses (upper trace). The lower trace shows the background without MS2 or the gold nanoshell (r.m.s. noise 2 fm). Insets show the recorded spectrum SD for the hybrid resonator (Q ∼ 4 × 105) and an illustration of MS2 virus (radius a ∼ 13.6 nm). (b) Step number statistics for all of the steps recorded over 3000 s.

Image of FIG. 4.

Click to view

FIG. 4.

(a) FEM simulation of the parking of MS2 virus at one of the dipole lobes of a plasmonic nanoshell with 60 nm inner core radius of silica and 11.5 nm shell thickness of Au. The field intensity at the point of contact grows to just over 252× the field of the 780 nm TE mode as indicated by the rainbow scale on the left. (b) shows the enhancement in the wavelength shift calculated from FEM for different a values, fitted with an analytical expression (Eq. (3)).

Loading

Article metrics loading...

/content/aip/journal/apl/101/4/10.1063/1.4739473
2012-07-27
2014-04-18

Abstract

We report the label-free detection and sizing by a microcavity of the smallest individual RNAvirus, MS2, with a mass only ∼1% of InfluenzaA (6 vs. 512 ag). Although detection of such a small bio-nano-particle has been beyond the reach of a bare spherical microcavity, it was accomplished with ease (S/N = 8, Q = 4 × 105) using a single dipole stimulated plasmonic-nanoshell as a microcavity wavelength shift enhancer, providing an enhancement of ∼70×, in agreement with theory. Unique wavelength shift statistics are recorded consistent with an ultra-uniform genetically programmed substance that is drawn to the plasmonic hot spots by light-forces.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/4/1.4739473.html;jsessionid=ahzxncfbl6w4.x-aip-live-06?itemId=/content/aip/journal/apl/101/4/10.1063/1.4739473&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Taking whispering gallery-mode single virus detection and sizing to the limit
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/4/10.1063/1.4739473
10.1063/1.4739473
SEARCH_EXPAND_ITEM