1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Enhancement of the carrier mobility of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) by incorporating reduced graphene oxide
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/5/10.1063/1.4740073
1.
1. V. Coropceanu, J. Cornil, D. A. da Silva Fiho, Y. Olivier, R. Silbey, and J. Brédas, Chem. Rev. 107, 926 (2007).
http://dx.doi.org/10.1021/cr050140x
2.
2. Y. J. Lin and Y. C. Su, J. Appl. Phys. 111, 073712 (2012).
http://dx.doi.org/10.1063/1.3702446
3.
3. Y. M. Chin, J. C. Lin, Y. J. Lin, and K. C. Wu, Sol. Energy Mater. Sol. Cells 94, 2154 (2010).
http://dx.doi.org/10.1016/j.solmat.2010.07.002
4.
4. J. Maeng, M. Jo, S. J. Kang, M. K. Kwon, G. Jo, T. W. Kim, J. Seo, H. Hwang, D. Y. Kim, S. J. Park, and T. Lee, Appl. Phys. Lett. 93, 123109 (2008).
http://dx.doi.org/10.1063/1.2990225
5.
5. L. W. Ji, W. S. Shih, T. H. Fang, C. Z. Wu, S. M. Peng, and T. H. Meen, J. Mater. Sci. 45, 3266 (2010)
http://dx.doi.org/10.1007/s10853-010-4336-4
6.
6. B. Riedel, Y. Shen, J. Hauss, M. Aichholz, X. Tang, U. Lemmer, and M. Gerken, Adv. Mater. 23, 740 (2011).
http://dx.doi.org/10.1002/adma.201003490
7.
7. Y. J. Lin, T. H. Su, J. C. Lin, and Y. C. Su, Synth. Met. 162, 406 (2012).
http://dx.doi.org/10.1016/j.synthmet.2011.12.029
8.
8. Y. J. Lin, F. M. Yang, C. Y. Huang, W. Y. Chou, J. Chang, and Y. C. Lien, Appl. Phys. Lett. 91, 092127 (2007).
http://dx.doi.org/10.1063/1.2777147
9.
9. A. Moujoud, S. H. Oh, K. Y. Heo, K. W. Lee, and H. J. Kim, Org. Electron. 10, 785 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.03.014
10.
10. J. Ouyang, Q. Xu, C. W. Chu, Y. Yang, G. Li, and J. Shinar, Polymer 45, 8443 (2004).
http://dx.doi.org/10.1016/j.polymer.2004.10.001
11.
11. T. Zhang, Z. Xu, D. L. Tao, F. Teng, F. S. Li, M. J. Zheng, and X. R. Xu, Nanotechnology 16, 2861 (2005).
http://dx.doi.org/10.1088/0957-4484/16/12/021
12.
12. C. C. Oey, A. B. Djurišić, C. Y. Kwong, C. H. Cheung, W. K. Chan, J. M. Nunzi, and P. C. Chui, Thin Solid Films 492, 253 (2005).
http://dx.doi.org/10.1016/j.tsf.2005.07.118
13.
13. J. H. Lin, J. J. Zeng, Y. C. Su, and Y. J. Lin, Appl. Phys. Lett. 100, 153509 (2012).
http://dx.doi.org/10.1063/1.3703612
14.
14. Z. Liu, D. He, Y. Wang, H. Wu, and J. Wang, Synth. Met. 160, 1036 (2010).
http://dx.doi.org/10.1016/j.synthmet.2010.02.022
15.
15. X. Xue, C. Ma, C. Xiao, and L. Xing, Solid State Sci. 13, 1526 (2011).
http://dx.doi.org/10.1016/j.solidstatesciences.2011.05.015
16.
16. X. Wu, S. Qi, and G. Duan, Synth. Met. 161, 2215 (2011).
http://dx.doi.org/10.1016/j.synthmet.2011.08.002
17.
17. T. A. Pham, J. S. Kim, J. S. Kim, and Y. T. Jeong, Colloids Surf., A 384, 543 (2011).
http://dx.doi.org/10.1016/j.colsurfa.2011.05.019
18.
18. N. G. Semaltianos, S. Logothetidis, N. Hastas, W. Perrie, S. Romani, R. J. Potter, G. Dearden, K. G. Watkins, P. French, and M. Sharp, Chem. Phys. Lett. 484, 283 (2010).
http://dx.doi.org/10.1016/j.cplett.2009.11.054
19.
19. M. M. de Kok, M. Buechel, S. I. E. Vulto, P. van de Weijer, E. A. Meulenkamp, S. H. P. M. de Winter, A. J. G. Mank, H. J. M. Vorstenbosch, C. H. L. Weijtens, and V. van Elsbergen, Phys. Status Solidi A 201, 1342 (2004).
http://dx.doi.org/10.1002/pssa.200404338
20.
20. D. M. Taylor, D. Morris, and J. A. Cambridge, Appl. Phys. Lett. 85, 5266 (2004).
http://dx.doi.org/10.1063/1.1829389
21.
21. A. M. Nardes, M. Kemerink, and R. A. Janssen, Phys. Rev. B 76, 085208 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.085208
22.
22. T. Holstein, Ann. Phys. 8, 343 (1959).
http://dx.doi.org/10.1016/0003-4916(59)90003-X
23.
23. D. Emin, Adv. Phys. 24, 305 (1975).
http://dx.doi.org/10.1080/00018737500101411
24.
24. L. Friedman, Phys. Rev. 135, A233 (1964).
http://dx.doi.org/10.1103/PhysRev.135.A233
25.
25. L. H. Liang, C. M. Shen, X. P. Chen, W. M. Liu, and H. J. Gao, J. Phys.: Condens. Matter. 16, 267 (2004).
http://dx.doi.org/10.1088/0953-8984/16/3/007
26.
26. F. Ortmann and S. Roche, Phys. Rev. B 84, 180302 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.180302
27.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/5/10.1063/1.4740073
Loading
/content/aip/journal/apl/101/5/10.1063/1.4740073
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/5/10.1063/1.4740073
2012-08-01
2014-09-30

Abstract

The investigation of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT:PSS) having the reduced graphene oxide (RGO), denoted RGO-doped PEDOT:PSS shows that conductivity of RGO-doped PEDOT:PSS samples is 27 times higher than that of PEDOT:PSS at 300 K. The improved electrical conductivity is considered to mainly come from the mobility enhancement. The carrier mobility in RGO-doped PEDOT:PSS samples exhibits unexpectedly strong temperature dependence, implying the domination of tunneling (hopping) at low (high) temperatures. An exhibition of high mobility of RGO-doped PEDOT:PSS samples is attributed to the increased spacing between molecules.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/5/1.4740073.html;jsessionid=izhprao9us06.x-aip-live-03?itemId=/content/aip/journal/apl/101/5/10.1063/1.4740073&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhancement of the carrier mobility of poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) by incorporating reduced graphene oxide
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/5/10.1063/1.4740073
10.1063/1.4740073
SEARCH_EXPAND_ITEM