Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Nature Mater. 6(9), 652655 (2007).
2. J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Science 315(5811), 490493 (2007).
3. J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. J. Cho, and H. J. Dai, Science 287(5453), 622625 (2000).
4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306(5296), 666669 (2004).
5. A. K. Geim, Science 324(5934), 15301534 (2009).
6. G. Chen, T. M. Paronyan, E. M. Pigos, and A. R. Harutyunyan, Sci. Rep. 2, 343 (2012).
7. X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324(5932), 13121314 (2009).
8. A. Reina, X. T. Jia, J. Ho, D. Nezich, H. B. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Lett. 9(1), 3035 (2009).
9. T. M. Paronyan, E. M. Pigos, G. Chen, and A. R. Harutyunyan, ACS Nano 5(12), 96199627 (2011).
10. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97(18), 187401 (2006).
11. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, Nano Lett. 6(12), 26672673 (2006).
12. S. R. Ng, C. X. Guo, and C. M. Li, Electroanalysis 23(2), 442448 (2011).
13. J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, ACS Nano 3(2), 301306 (2009).
14. G. H. Lu, L. E. Ocola, and J. H. Chen, Appl. Phys. Lett. 94(8), 083111 (2009).
15. E. H. Hwang, S. Adam, and S. Das Sarma, Phys. Rev. B 76(19), 195421 (2007).
16. G. Chen, T. M. Paronyan, E. M. Pigos, G. U. Sumanasekera, and A. R. Harutyunyan, Appl. Phys. Lett. 95(12), 123118 (2009).
17. Y. P. Dan, Y. Lu, N. J. Kybert, Z. T. Luo, and A. T. C. Johnson, Nano Lett. 9(4), 14721475 (2009).
18. E. Bekyarova, M. Davis, T. Burch, M. E. Itkis, B. Zhao, S. Sunshine, and R. C. Haddon, J. Phys. Chem. B 108(51), 1971719720 (2004).
19. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science 297(5582), 787792 (2002).
20. A. Salehi-Khojin, D. Estrada, K. Y. Lin, M. H. Bae, F. Xiong, E. Pop, and R. I. Masel, Adv. Mater. 24(1), 53 (2012).
21. Q. H. Wang and M. C. Hersam, Nature Chem. 1(3), 206211 (2009).
22. Z. Z. Sun, C. L. Pint, D. C. Marcano, C. G. Zhang, J. Yao, G. D. Ruan, Z. Yan, Y. Zhu, R. H. Hauge, and J. M. Tour, Nature Commun. 2, 559 (2011).
23. W. Hoheisel, K. Jungmann, M. Vollmer, R. Weidenauer, and F. Trager, Phys. Rev. Lett. 60(16), 16491652 (1988).
24. K. E. Hurst, A. C. Dillon, S. Yang, and J. H. Lehman, J. Phys. Chem. C 112(42), 1629616300 (2008).
25. J. Lin, J. Zhong, J. R. Kyle, M. Penchev, M. Ozkan, and C. S. Ozkan, Nanotechnology 22, 355701 (2011).
26. R. J. Chen, N. R. Franklin, J. Kong, J. Cao, T. W. Tombler, Y. G. Zhang, and H. J. Dai, Appl. Phys. Lett. 79(14), 22582260 (2001).
27. S. Rumyantsev, G. Liu, M. S. Shur, R. A. Potyrailo, and A. A. Balandin, Nano Lett. 12(5), 22942298 (2012).
28. Y. Lu, B. R. Goldsmith, N. J. Kybert, and A. T. C. Johnson, Appl. Phys. Lett. 97(8), 083107 (2010).
29. A. K. Geim, R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, and N. M. R. Peres, Science 320(5881), 13081308 (2008).
30. T. O. Wehling, M. I. Katsnelson, and A. I. Lichtenstein, Chem. Phys. Lett. 476(4–6), 125134 (2009).
31. L. W. Bruch, M. W. Cole, and H. Y. Kim, J. Phys.: Condensed Matter 22(30), 304001 (2010).
32. B. Krauss, T. Lohmann, D. H. Chae, M. Haluska, K. von Klitzing, and J. H. Smet, Phys. Rev. B 79(16), 165428 (2009).
33. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, Nat. Nanotechnol. 3(9), 563568 (2008).
34. B. H. Hong, K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, and J. Y. Choi, Nature (London) 457(7230), 706710 (2009).
35. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnol. 5(8), 574578 (2010).
36. G. Chen and A. R. Harutyunyan, U.S. patent application No 61/502,326 (2011).
37. See supplementary material at for additional information on device fabrication, electrical conductance measurements, detection limit estimation, gas sensing experiments in a controlled environment, and gas sensing experiments in air. [Supplementary Material]

Data & Media loading...


Article metrics loading...



Graphene is widely regarded as one of the most promising materials for sensor applications. Here, we demonstrate that a pristine graphene can detect gas molecules at extremely low concentrations with detection limits as low as 158 parts-per-quadrillion (ppq) for a range of gas molecules at room temperature. The unprecedented sensitivity was achieved by applying our recently developed concept of continuous in situcleaning of the sensing material with ultraviolet light. The simplicity of the concept, together with graphene’s flexibility to be used on various platforms, is expected to intrigue more investigations to develop ever more sensitive sensors.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd