1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Self-cavity laser oscillations with very low threshold from a symmetric organic crystal waveguide
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/6/10.1063/1.4742734
1.
1. D. Fichou, S. Delysse, and J. M. Nunzi, Adv. Mater. 9, 1178 (1997).
http://dx.doi.org/10.1002/adma.19970091512
2.
2. M. Ichikawa, R. Hibino, M. Inoue, T. Haritani, S. Hotta, K. Araki, T. Koyama, and Y. Taniguchi, Adv. Mater. 17, 2073 (2005).
http://dx.doi.org/10.1002/adma.200500734
3.
3. Z. Q. Xie, B. Yang, F. Li, G. Cheng, L. L. Liu, G. D. Yang, H. Xu, L. Ye, M. Hanif, S. Y. Liu, D. G. Ma, and Y. G. Ma, J. Am. Chem. Soc. 127, 14152 (2005).
http://dx.doi.org/10.1021/ja054661d
4.
4. W. J. Xie, Y. P. Li, F. Li, F. Z. Shen, and Y. G. Ma, Appl. Phys. Lett. 90, 141110 (2007).
http://dx.doi.org/10.1063/1.2720298
5.
5. Y. P. Li, F. Z. Shen, H. Wang, F. He, Z. Q. Xie, H. Y. Zhang, Z. M. Wang, L. L. Liu, F. Li, M. Hanif, L. Ye, and Y. G. Ma, Chem. Mater. 20, 7312 (2008).
http://dx.doi.org/10.1021/cm801427s
6.
6. H. Nakanotani, M. Saito, H. Nakamura, and C. Adachi, Appl. Phys. Lett. 95, 103307 (2009).
http://dx.doi.org/10.1063/1.3216047
7.
7. H. Nakanotani, M. Saito, H. Nakamura, and C. Adachi, Appl. Phys. Lett. 95, 033308(2009).
http://dx.doi.org/10.1063/1.3184588
8.
8. H. Nakanotani and C. Adachi, Appl. Phys. Lett. 96, 053301 (2010).
http://dx.doi.org/10.1063/1.3298558
9.
9. H. H. Fang, Q. D. Chen, J. Yang, L. Wang, Y. Jiang, H. Xia, J. Feng, Y. G. Ma, H. Y. Wang, and H. B. Sun, Appl. Phys. Lett. 96, 103358 (2010).
http://dx.doi.org/10.1063/1.3359848
10.
10. H. Wang, F. Li, I. Ravia, B. R. Gao, Y. P. Li, V. Medvedev, H. B. Sun, N. Tessler, and Y. G. Ma, Adv. Funct. Mater. 21, 3770 (2011).
http://dx.doi.org/10.1002/adfm.201100783
11.
11. Y. X. Xu, H. Y. Zhang, F. Li, F. Z. Shen, H. Wang, X. J. Li, Y. Yu, and Y. G. Ma, J. Mater. Chem. 22, 1592 (2012).
http://dx.doi.org/10.1039/c1jm14815j
12.
12. X. J. Li, Y. X. Xu, F. Li, and Y. G. Ma, Org. Electron. 13, 762 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.01.028
13.
13. M. Ichikawa, K. Nakamura, M. Inoue, H. Mishima, T. Haritani, R. Hibino, T. Koyama, and Y. Taniguchi, Appl. Phys. Lett. 87, 221113 (2005).
http://dx.doi.org/10.1063/1.2138361
14.
14. K. Shimizu, Y. Mori, and S. Hotta, J. Appl. Phys. 99, 063505 (2006).
http://dx.doi.org/10.1063/1.2181278
15.
15. T. Yamao, K. Yamamoto, Y. Taniguchi, and S. Hotta, Appl. Phys. Lett. 91, 201117. (2007).
http://dx.doi.org/10.1063/1.2815642
16.
16. S. Z. Bisri, T. Takenobu, Y. Yomogida, H. Shimotani, T. Yamao, S. Hotta, and Y. Iwasa, Adv. Funct. Mater. 19, 1728 (2009).
http://dx.doi.org/10.1002/adfm.200900028
17.
17. F. Sasaki, M. Mori, S. Haraichi, Y. Ido, Y. Masumoto, and S. Hotta, Org. Electron. 11, 1192 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.04.026
18.
18. T. Yamao, Y. Sakurai, K. Terasaki, Y. Shimizu, H. Jinnai, and S. Hotta, Adv. Mater. 22, 3708 (2010).
http://dx.doi.org/10.1002/adma.201000171
19.
19. Y. Yomogida, T. Takenobu, H. Shimotani, K. Sawabe, S. Z. Bisri, T. Yamao, S. Hotta, and Y. Iwasa, Appl. Phys. Lett. 97,173301 (2010).
http://dx.doi.org/10.1063/1.3504690
20.
20. S. Hotta and T. Yamao, J. Mater. Chem. 21, 1295 (2011).
http://dx.doi.org/10.1039/c0jm02290j
21.
21. H. H. Fang, R. Ding, S. Y. Lu, J. Yang, X. L. Zhang, R. Yang, J. Feng, Q. D. Chen, J. F. Song, and H. B. Sun, Adv. Funct. Mater. 22, 33 (2012).
http://dx.doi.org/10.1002/adfm.201101467
22.
22. T. Yamao, K. Yamamoto, T. Miki, H. Akagami, Y. Nishimoto, and S. Hotta, Phys. Status Solidi C 5, 3194 (2008)
http://dx.doi.org/10.1002/pssc.200779206
23.
23. T. Yamao, K. Yamamoto, Y. Taniguchi, T. Miki, and S. Hotta, J. Appl. Phys. 103, 093115 (2008).
http://dx.doi.org/10.1063/1.2919710
24.
24. Y. Ido, Y. Masumoto, F. Sasaki, M. Mori, S. Haraichi, and S. Hotta, Appl. Phys. Express 3, 012702 (2010).
http://dx.doi.org/10.1143/APEX.3.012702
25.
25. S. Fujiwara, K. Bando, Y. Masumoto, F. Sasaki, S. Kobayashi, S. Haraichi, and S. Hotta, Appl. Phys. Lett. 91, 021104 (2007).
http://dx.doi.org/10.1063/1.2755925
26.
26. E. B. Namdas, M. Tong, P. Ledochowitsch, S. R. Mednick, J. D. Yuen, D. Moses, and A. J. Heeger, Adv. Mater. 21. 799 (2009).
http://dx.doi.org/10.1002/adma.200802436
27.
27. H. Yanagi, Y. Marutani, F. Sasaki, Y. Makino, T. Yamao, and S. Hotta, Appl. Phys. Express 4, 062601 (2011).
http://dx.doi.org/10.1143/APEX.4.062601
28.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/6/10.1063/1.4742734
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Molecule structure of the CNDPASDB and fluorescence photograph of the slab CNDPASDB single crystal taken under an UV lamp. (b) SEM image of the slab-like CNDPASDB single crystal.

Image of FIG. 2.

Click to view

FIG. 2.

Scheme of the structure of waveguide (quartz/crystal/air) and waveguide (air/crystal/air), and measurement setup for edge emissions of the slab CNDPASDB crystal.

Image of FIG. 3.

Click to view

FIG. 3.

PL, ASE, and Laser emission spectra of slab organic crystals of CNDPASDB. Waveguide structure: quartz/crystal/air for ASE and air/crystal/air for laser. Crystal size: 900 × 400 × 1.3 m for ASE and 1800 × 580 × 4 m for laser. Pump intensity: 128 kW/cm2 for ASE and 28.8 kW/cm2 for laser. Inset: the transit PL spectrum of the CNDPASDB crystal.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Emission spectra from the edge of waveguide as a function of pump intensity. (b) Dependence of the FWHM and peak intensity of the emission spectra on the pump intensity. Crystal size: 900 × 400 × 1.3 m.

Image of FIG. 5.

Click to view

FIG. 5.

(a) Emission spectra from the edge of waveguide as a function of pump intensity. (b) Dependence of the FWHM and peak intensity of the emission spectra on the pump intensity. Crystal size: 1800 × 580 × 4 m.

Tables

Generic image for table

Click to view

Table I.

Summarize of data for the optically pumped ASE and laser of the CNDPASDB crystal.

Generic image for table

Click to view

Table II.

Threshold for the optically pumped laser oscillation of different organic crystals.

Loading

Article metrics loading...

/content/aip/journal/apl/101/6/10.1063/1.4742734
2012-08-06
2014-04-18

Abstract

A symmetric waveguide structure of air/crystal/air comprising a slab crystal of cyano substituted oligo(-phenylenevinylene) (OPV) has been developed for organic crystal lasers. The OPV crystals exhibit high photoluminescence efficiency of 30% and have smooth surfaces and edges, which ensures strong self-cavity optical confinement and provides optical feedback for the laser oscillation. A single-mode laser oscillation is observed around 573 nm with a threshold of 12.8 kW/cm2 that is one of the lowest values for organic crystal lasers. The leaky loss caused by the substrate is prevented by the air/crystal/air waveguide structure.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/6/1.4742734.html;jsessionid=cka6srihgtbs.x-aip-live-02?itemId=/content/aip/journal/apl/101/6/10.1063/1.4742734&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Self-cavity laser oscillations with very low threshold from a symmetric organic crystal waveguide
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/6/10.1063/1.4742734
10.1063/1.4742734
SEARCH_EXPAND_ITEM