NOTICE: Scitation Maintenance Sunday, March 1, 2015.

Scitation users may experience brief connectivity issues on Sunday, March 1, 2015 between 12:00 AM and 7:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, Nat. Photon. 6, 180 (2012).
2. M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W.-M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, and K. Leo, Adv. Funct. Mater. 21, 3019 (2011).
3. J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, Adv. Mater. 17, 66 (2005).
4. N. C. Giebink, G. P. Wiederrecht, M. R. Wasielewski, and S. R. Forrest, Phys. Rev. B 83, 6 (2011).
5. A. Yakimov and S. R. Forrest, Appl. Phys. Lett. 80, 1667 (2002).
6. J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, Appl. Phys. Lett. 85, 5757 (2004).
7. B. Maennig, J. Drechsel, D. Gebeyehu, P. Simon, F. Kozlowski, A. Werner, F. Li, S. Grundmann, S. Sonntag, M. Koch, K. Leo, M. Pfeiffer, H. Hoppe, D. Meissner, N. S. Sariciftci, I. Riedel, V. Dyakonov, and J. Parisi, Appl. Phys. A: Mater. Sci. Process. 79, 1 (2004).
8. D. Cheyns, B. P. Rand, and P. Heremans, Appl. Phys. Lett. 97, 033301 (2010).
9. R. Pandey and R. J. Holmes, Adv. Mater. 22, 5301 (2010).
10. G. Wei, X. Xiao, S. Wang, K. Sun, K. J. Bergemann, M. E. Thompson, and S. R. Forrest, ACS Nano 6, 972 (2011).
11. G. D. Wei, S. Y. Wang, K. Sun, M. E. Thompson, and S. R. Forrest, Adv. Energy Mater. 1, 184 (2011).
12. J. D. Zimmerman, X. Xiao, K. Renshaw, S. Y. Wang, V. V. Diev, M. E. Thompson, and S. R. Forrest, “Independent Control of Bulk and Interfacial Morphologies of Small Molecular Weight Organic Heterojunction Solar Cells,” Nano Lett. (in press).
13. F. Yang, K. Sun, and S. R. Forrest, Adv. Mater. 19, 4166 (2007).
14. V. Shrotriya, G. Li, Y. Yao, C. W. Chu, and Y. Yang, Appl. Phys. Lett. 88, 073508 (2006).
15. S. R. Forrest, Chem. Rev. 97, 1793 (1997).
16. B. E. Lassiter, G. D. Wei, S. Y. Wang, J. D. Zimmerman, V. V. Diev, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 98, 3 (2011).
17. B. P. Rand, P. Peumans, and S. R. Forrest, J. Appl. Phys. 96, 7519 (2004).
18. P. Peumans, V. Bulovic, and S. R. Forrest, Appl. Phys. Lett. 76, 2650 (2000).
19.American society for testing and materials Standards Nos. E1021, E948, and E973.
20. C. H. Seaman, Sol. Energy 29, 291 (1982).
21. L. A. A. Pettersson, L. S. Roman, and O. Inganas, J. Appl. Phys. 86, 487 (1999).
22. A. Hadipour, B. de Boer, and P. W. M. Blom, Org. Electron. 9, 617 (2008).
23. M. T. Greiner, M. G. Helander, W.-M. Tang, Z.-B. Wang, J. Qiu, and Z.-H. Lu, Nat. Mater. 11, 7681 (2011).
24. P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003).
25. D. Qin, P. Gu, R. S. Dhar, S. G. Razavipour, and D. Ban, Phys. Status Solidi (a) 208, 1967 (2011).
26. K. J. Bergemann and S. R. Forrest, Appl. Phys. Lett. 99, 3 (2011).
27. S. Pfuetzner, J. Meiss, A. Petrich, M. Riede, and K. Leo, Appl. Phys. Lett. 94, 223307 (2009).
28. K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, and M. E. Thompson, J. Am. Chem. Soc. 128, 81088109 (2006).
29. W. I. Jeong, Y. E. Lee, H. S. Shim, T. M. Kim, S. Y. Kim, and J. J. Kim, Adv. Funct. Mater. 22, 3089 (2012).

Data & Media loading...


Article metrics loading...



We demonstrate a tandem organic photovoltaic cell incorporating solution- and vacuum-deposited small molecules as the active layers. A blue and green-absorbing boron subphthalocyanine chloride:C graded heterojunction (HJ) sub-cell is combined with a green and red-absorbing functionalized squaraine/C bilayer HJ sub-cell, resulting in a tandem cell with a wavelength response from 350 nm to 800 nm. The efficiency of the cells depends on process conditions such as solvent annealing, resulting in nanocrystalline morphology that leads to improved charge and exciton transport compared with un-annealed cells. The incorporation of C in both sub-cells leads to an increase of short-circuit current by at least 30% compared to analogous cells using C. The optimized power conversion efficiency of the tandem cell is 6.6% ± 0.1%, with an open-circuit voltage of 1.97 ± 0.1 V under simulated 1 sun, AM 1.5G illumination. The tandem cell voltage is equal to the sum of the constituent sub-cells, indicating that the transparent, Ag nanoparticle/MoO compound charge recombination layer interposed between the cells is nearly lossless.


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Tandem organic photovoltaics using both solution and vacuum deposited small molecules