1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Enhanced ultraviolet response using graphene electrodes in organic solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/6/10.1063/1.4742928
1.
1. S. Günes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev. 107, 1324 (2007).
http://dx.doi.org/10.1021/cr050149z
2.
2. B. C. Thompson and J. M. J. Frechet, Angew. Chem. Int. Ed. 47, 58 (2008).
http://dx.doi.org/10.1002/anie.200702506
3.
3. P. A. Levermore, R. Jin, X. Wang, L. Chen, D. D. C. Bradley, and J. C. D. Mello, J. Mater. Chem. 18, 4414 (2008).
http://dx.doi.org/10.1039/b805994b
4.
4. J. C. Scott, J. H. Kaufman, P. J. Brock, R. DiPietro, J. Salem, and J. A. Goitia, J. Appl. Phys. 79, 2745 (1996).
http://dx.doi.org/10.1063/1.361096
5.
5. R. Schlatmann, D. Wilms Floet, A. Hilberer, F. Garten, P. J. M. Smulders, T. M. Klapwijk, and G. Hadziioannou, Appl. Phys. Lett. 69, 1764 (1996).
http://dx.doi.org/10.1063/1.117478
6.
6. Y. Galagan, J. -E. J. M. Rubingh, R. Andriessen, C.-C. Fan, P. W. M. Blom, S. C. Veenstra, and J. M. Kroon, Solar Energy Mater. Solar Cells 95, 1339 (2011).
http://dx.doi.org/10.1016/j.solmat.2010.08.011
7.
7. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
8.
8. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
9.
9. J. B. Wu, M. Agrawal, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen, and P. Peumans, ACS Nano 4, 43 (2010).
http://dx.doi.org/10.1021/nn900728d
10.
10. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008).
http://dx.doi.org/10.1126/science.1156965
11.
11. S. Park and R. S. Ruoff, Nature Nanotechnol. 4, 217 (2009).
http://dx.doi.org/10.1038/nnano.2009.58
12.
12. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon 45, 1558 (2007).
http://dx.doi.org/10.1016/j.carbon.2007.02.034
13.
13. K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, Nature Mater. 8, 203 (2009).
http://dx.doi.org/10.1038/nmat2382
14.
14. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324(5932), 1312 (2009).
http://dx.doi.org/10.1126/science.1171245
15.
15. C. Mattevi, H. Kim, and M. Chhowall, J. Mater. Chem. 21, 3324 (2011).
http://dx.doi.org/10.1039/c0jm02126a
16.
16. J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, Appl. Phys. Lett. 92, 263302 (2008).
http://dx.doi.org/10.1063/1.2924771
17.
17. Y.-Y. Choi, S. J. Kang, H.-K. Kim, W. M. Choi, and S.-I. Na, Solar Energy Mater. Solar Cells 96, 281 (2012).
http://dx.doi.org/10.1016/j.solmat.2011.09.031
18.
18. Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, Appl. Phys. Lett. 95, 063302 (2009).
http://dx.doi.org/10.1063/1.3204698
19.
19. Y. Wang, S. W. Tong, X. F. Xu, B. Özyilmaz, and K. P. Loh, Adv. Mater. 23, 1514 (2011).
http://dx.doi.org/10.1002/adma.201003673
20.
20. H. Park, P. R. Brown, V. Bulovic, and J. Kong, Nano Lett. 12, 133 (2012).
http://dx.doi.org/10.1021/nl2029859
21.
21. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.187401
22.
22. K. Norrman, M. V. Madsen, S. A. Gevorgyan, and F. C. Krebs, J. Am. Chem. Soc. 132, 16883 (2010).
http://dx.doi.org/10.1021/ja106299g
23.
23. M. Jørgensen, K. Norrman, and F. C. Krebs, Solar Energy Mater. Solar Cells 92, 686 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.01.005
24.
24. X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, and A. F. Hebard, Nano Lett. 12, 2745 (2012).
http://dx.doi.org/10.1021/nl204414u
25.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/6/10.1063/1.4742928
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematics of organic photovoltaic devices; (b) optical microscope images of a 4-layer graphene film on glass at lower (top left) and higher (top right) magnifications and Raman spectrum of a 4-layer graphene film (bottom).

Image of FIG. 2.

Click to view

FIG. 2.

Transmittance as a function of wavelength for 1-, 2 -, 3 -, and 4-layer graphene and ITO films, with the background glass transmission spectrum (also shown) subtracted. Inset: Transmittance at 550 nm wavelength as a function of the number of layers.

Image of FIG. 3.

Click to view

FIG. 3.

Current–voltage characteristics of two batches of the organic photovoltaic devices based on pristine graphene films and ITO control, measured in the dark and under AM 1.5 illumination.

Image of FIG. 4.

Click to view

FIG. 4.

Comparison of (a) absorbance spectra and (b) relative normalized photocurrent spectra of the organic photovoltaic devices for Gra I and ITO I devices.

Tables

Generic image for table

Click to view

Table I.

Short‐circuit current density ( ), open-circuit voltage ( ), FF, and power conversion efficiency (PCE) of the photovoltaic devices shown in Fig. 3  .

Loading

Article metrics loading...

/content/aip/journal/apl/101/6/10.1063/1.4742928
2012-08-08
2014-04-21

Abstract

We demonstrate enhanced ultraviolet (UV) response in organic photovoltaic devices using few-layer graphene as the transparent and conducting electrode. This is compared to the same device stack fabricated on a conventional indium tin oxide (ITO) electrode. The enhanced UV response was confirmed by examining the photocurrent spectra over a wide spectral range and is consistent with the excellent UV transmittance of graphene over ITO. The results render the graphene electrode a promising alternative to ITO to enable applications for UV photodetectors or other optoelectronic devices with a wider optical window.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/6/1.4742928.html;jsessionid=3tg6inuv1aawm.x-aip-live-03?itemId=/content/aip/journal/apl/101/6/10.1063/1.4742928&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhanced ultraviolet response using graphene electrodes in organic solar cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/6/10.1063/1.4742928
10.1063/1.4742928
SEARCH_EXPAND_ITEM