1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
High-efficiency and low-efficiency-roll-off single-layer white organic light-emitting devices with a bipolar transport host
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/6/10.1063/1.4745507
1.
1. C. W. Tang and S. A. VanSLyke, Appl. Phys. Lett. 51, 913 (1987).
http://dx.doi.org/10.1063/1.98799
2.
2. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature 459, 234 (2009).
http://dx.doi.org/10.1038/nature08003
3.
3. C. H. Chang, C. C. Chen, C. C. Wua, S. Y. Chang, J. Y. Hung, and Y. Chi, Org. Electron. 11, 266 (2010).
http://dx.doi.org/10.1016/j.orgel.2009.11.004
4.
4. J. H. Jou, Y. C. Chou, S. M. Shen, M. H. Wu, P. S. Wu, C. R. Lin, R. Z. Wu, S. H. Chen, M. K. Weib, and C. W. Wang, J. Mater. Chem. 21, 18523 (2011).
http://dx.doi.org/10.1039/c1jm13975d
5.
5. L. Duan, D. Q. Zhang, K. W. Wu, X. Q. Huang, L. D. Wang, and Y. Qiu, Adv. Funct. Mater. 21, 3540 (2011).
http://dx.doi.org/10.1002/adfm.201100943
6.
6. F. L. Wong, M. K. Fung, S. L. Tao, S. L. Lai, W. M. Tsang, K. H. Kong, W. M. Choy, C. S. Lee, and S. T. Lee, J. Appl. Phys. 104, 014509 (2008).
http://dx.doi.org/10.1063/1.2940727
7.
7. J. Li, P. Chen, Y. Duan, F. F. Zhao, C. N. Li, W. F. Xie, S. Y. Liu, L. Y. Zhang, and B. Li, Semicond. Sci. Technol. 22, 798 (2007).
http://dx.doi.org/10.1088/0268-1242/22/7/021
8.
8. W. Y. Ji, J. L. Zhao, Z. C. Sun, and W. F. Xie, Org. Electron. 12, 1137 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.03.042
9.
9. V. V. Cherpak, P. Y. Stakhira, D. Yu. Volynyuka, J. Simokaitiene, A. Tomkeviciene, J. V. Grazulevicius, A. Bucinskas, V. M. Yashchuk, A. V. Kukhta, I. N. Kukhta, V. V. Kosach, and Z. Yu. Hotra, Synth. Met. 161, 1343 (2011).
http://dx.doi.org/10.1016/j.synthmet.2011.04.035
10.
10. T. H. Huang, J. T. Lin, Li. Y. Chen, Y. T. Lin, and C. C. Wu, Adv. Mater. 18, 602 (2006).
http://dx.doi.org/10.1002/adma.200502078
11.
11. T. Matsushima and C. Adachi, Thin Solid Films 516, 4288 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.09.038
12.
12. X. F. Qiao, Y. T. Tao, Q. Wang, D. G. Ma, C. L. Yang, L. K. Wang, J. G. Qin, and F. S. Wang, J. Appl. Phys. 108, 034508 (2010).
http://dx.doi.org/10.1063/1.3457672
13.
13. Z. W. Liu, M. G. Helander, Z. B. Wang, and Z. H. Lu, Org. Electron. 10, 1146 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.06.002
14.
14. Z. W. Liu, M. G. Helander, Z. B. Wang, and Z. H. Lu, J. Phys. Chem. C 114, 11931 (2010).
http://dx.doi.org/10.1021/jp101269r
15.
15. P. A. Lane, G. P. Kushto, and Z. H. Kafafi, Appl. Phys. Lett. 90, 023511 (2007).
http://dx.doi.org/10.1063/1.2426882
16.
16. W. S. Jeon, T. J. Park, K. H. Kimb, R. Pode, J. Jang, and J. H. Kwon, Org. Electron. 11, 179 (2010).
http://dx.doi.org/10.1016/j.orgel.2009.10.010
17.
17. S. W. Kim, J. H. Park, S. S. Oh, D. Y. Kim, E. H. Choi, G. S. Cho, Y. H. Seo, S. O. Kang, and B. Park, Appl. Phys. Lett. 89, 213511 (2006).
http://dx.doi.org/10.1063/1.2397024
18.
18. N. C. Erickson and R. J. Holmes, Appl. Phys. Lett. 97, 083308 (2010).
http://dx.doi.org/10.1063/1.3481426
19.
19. S. J. Konezny, D. L. Smith, M. E. Galvin, and L. J. Rothberg, J. Appl. Phys. 99, 064509 (2006).
http://dx.doi.org/10.1063/1.2186374
20.
20. C. W. Joo, S. O. Jeon, K. S. Yook, and J. Y. Lee, Org. Electron. 11, 36 (2010).
http://dx.doi.org/10.1016/j.orgel.2009.09.019
21.
21. N. C. Erickson and R. J. Holmes, J. Appl. Phys. 110, 084515 (2011).
http://dx.doi.org/10.1063/1.3653285
22.
22. S. C. Tse, K. K. Tsung, and S. K. So, Appl. Phys. Lett. 90, 213502 (2007).
http://dx.doi.org/10.1063/1.2740110
23.
23. H. H. Chang, W. S. Tsai, C. P. Chang, N. P. Chen, K. T. Wong, W. Y. Hung, and S. W. Chen, Org. Electron. 12, 2025 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.08.030
24.
24. O.-K. Kima, W. H. Kimb, Z. Huang, J. T. Je, and C. S. P. Sung, Synth. Met. 150, 189 (2005).
http://dx.doi.org/10.1016/j.synthmet.2005.02.005
25.
25. L. D. Hou, L. Duan, J. Qiao, D. Q. Zhang, L. D. Wang, Y. Cao, and Y. Qiu, J. Mater. Chem. 21, 5312 (2011).
http://dx.doi.org/10.1039/c0jm02987d
26.
26. C. Coya, A. L. Álvarez, M. Ramos, R. Gómez, C. Seoane, and J. L. Segura, Synth. Met. 161, 2580 (2012).
http://dx.doi.org/10.1016/j.synthmet.2011.08.010
27.
27. Y. F. Wang, Y. Liu, X. S. Li, H. R. Qi, M. X. Zhu, L. Wang, G. T. Lei, Q. L. Wei, W. G. Zhu, J. B. Peng, and Y. Cao, Org. Electron. 11, 1954 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.09.012
28.
28. F. C. Chen, S. C. Chien, and Y. S. Chen, Appl. Phys. Lett. 94, 043306 (2009).
http://dx.doi.org/10.1063/1.3075066
29.
29. Y. F. Wang, Y. Liu, Z. Y. Zhang, J. Luo, D. Y. Shi, H. Tan, G. T. Lei, M. X. Zhu, W. G. Zhu, and Y. Cao, Dyes Pigm. 91, 495 (2011).
http://dx.doi.org/10.1016/j.dyepig.2011.04.013
30.
30. K. Hutchison, J. Gao, G. Schick, Y. Rubin, and F. Wud, J. Am. Chem. Soc. 121, 5611 (1999).
http://dx.doi.org/10.1021/ja990608b
31.
31. J. H. Zou, H. Wu, C. S. Lam, C. D. Wang, J. Zhu, C. M. Zhong, S. J. Hu, C. L. Ho, G. J. Zhou, H. B. Wu, W. C. H. Choy, J. B. Peng, Y. Cao, and W. Y. Wong, Adv. Mater. 23, 2976 (2011).
http://dx.doi.org/10.1002/adma.201101130
32.
32. L. D. Hou, L. Duan, J. Qiao, D. Q. Zhang, G. F. Dong, L. D. Wang, and Y. Qiu, Org. Electron. 11, 1344 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.05.015
33.
33. F. M. Hsu, C. H. Chien, C. F. Shu, C. H. Lai, C. C. Hsieh, K. W. Wang, and P. T. Chou, Adv. Funct. Mater. 19, 2834 (2009).
http://dx.doi.org/10.1002/adfm.200900703
34.
34. M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev. B. 62, 10967 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.10967
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/6/10.1063/1.4745507
Loading
/content/aip/journal/apl/101/6/10.1063/1.4745507
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/6/10.1063/1.4745507
2012-08-09
2014-10-23

Abstract

High-efficiency single-layer (SL) white organic light-emitting devices (WOLEDs) with a bipolar transport host were fabricated. The SL WOLEDs were achieved by combining blue and orange emission. Compared with the corresponding multilayer WOLEDs, the SL WOLEDs alleviated the efficiency roll-off without compromise of current efficiency due to the broader exciton formation zone and balance of carrier injection and transport. For example, The power efficiency of the SL WOLED based on Iridium (III) bis(4-phenylthieno[3,2-c]pyridinato-N,C2′) acetylacetonate orange emission could reach 20.9 lm/W at 1000 cd/m2, which also could reach 14.5 lm/W at a very high brightness of 5000 cd/m2.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/6/1.4745507.html;jsessionid=qddlru9y82zs.x-aip-live-02?itemId=/content/aip/journal/apl/101/6/10.1063/1.4745507&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High-efficiency and low-efficiency-roll-off single-layer white organic light-emitting devices with a bipolar transport host
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/6/10.1063/1.4745507
10.1063/1.4745507
SEARCH_EXPAND_ITEM