1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Wireless power transfer to a cardiac implant
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/7/10.1063/1.4745600
1.
1. F. C. Flack, E. D. James, and D. M. Schlapp, Med. Biol. Eng. 9, 7985 (1971).
http://dx.doi.org/10.1007/BF02474736
2.
2. W. H. Ko, S. P. Liang, and C. D. F. Fung, Med. Biol. Eng. Comput. 15, 634640 (1977).
http://dx.doi.org/10.1007/BF02457921
3.
3. W. J. Heetderks, IEEE Trans. Biomed. Eng. 35, 323327 (1988).
http://dx.doi.org/10.1109/10.1388
4.
4. A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, Science 317, 8386 (2007).
http://dx.doi.org/10.1126/science.1143254
5.
5. X. Yu, S. Sandhu, S. Beiker, R. Sassoon, and S. Fan, Appl. Phys. Lett. 99, 214102 (2011).
http://dx.doi.org/10.1063/1.3663576
6.
6. I. Sasada, J. Appl. Phys. 111, 07E733 (2012).
http://dx.doi.org/10.1063/1.3680237
7.
7. A. S. Y. Poon, S. O’Driscoll, and T. H. Meng, IEEE Trans. Antennas Propag. 58, 17391750 (2010).
http://dx.doi.org/10.1109/TAP.2010.2044310
8.
8. S. Kim, J. S. Ho, and A. S. Y. Poon, “ Wireless power transfer to miniature implants: transmitter optimization,” IEEE Trans. Antennas Propag. (to be published).
9.
9. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, NJ, 1984).
10.
10. E. Perret, S. Tedjini, and R. S. Nair, Proc. IEEE 100, 23302340 (2012).
http://dx.doi.org/10.1109/JPROC.2012.2186950
11.
11. G. Zubal, C. R. Harrell, E. O. Smith, Z. Rattner, G. Gindi, and P. B. Hoffer, Med. Phys. 21, 299302 (1994).
http://dx.doi.org/10.1118/1.597290
12.
12. S. Gabriel, R. W. Lau, and C. Gabriel, Phys. Med. Biol. 22712293 (1996).
http://dx.doi.org/10.1088/0031-9155/41/11/003
13.
13. S. Kim and A. S. Y. Poon, in IEEE Antennas and Propagation Society International Symposium (APSURSI), Spokane, WA, 2010.
14.
14. T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits (Cambridge University Press, Cambridge, U.K., 1998).
15.
15.“IEEE standard for safety with respect to human exposure to radiofrequency electromagnetic fields, 3 kHz to 300 GHz,” IEEE Standard C95.1-1991 (1999).
16.
16. L. S. Y. Wong, S. Hossain, A. Ta, J. Edvinsson, D. H. Rivas, and H. Naas, IEEE J. Solid-State Circuits 39, 24462456 (2004).
http://dx.doi.org/10.1109/JSSC.2004.837027
17.
17. G. J. Suaning and N. H. Lovell, IEEE Trans. Biomed. Eng. 48, 248260 (2001).
http://dx.doi.org/10.1109/10.909646
18.
18. Y. M. Hu and M. Sawan, IEEE Trans. Circuits Syst. I, Reg. Pap. 52, 25522562 (2005).
http://dx.doi.org/10.1109/TCSI.2005.858163
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/7/10.1063/1.4745600
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Body model for wireless power transfer to a cardiac implant. (a) Source plane modeled by current density . (b) Source position 5 cm above a small receive coil (white dot) on the heart. (c) Receive coil orientation at angle .

Image of FIG. 2.

Click to view

FIG. 2.

Theoretical k, receiver self-resistance , and coupling factor as a function of frequency for a receive coil of radius 0.5, 1, and 2 mm. Results are obtained on the multilayer model.

Image of FIG. 3.

Click to view

FIG. 3.

Efficiency as a function of frequency. The receiver is a 1-mm radius coil oriented on the heart. Theory results are obtained on the multilayer model and the FDTD results on the body model.

Image of FIG. 4.

Click to view

FIG. 4.

Efficiency as a function of coil angular displacement at 1.7 GHz for sources optimized for the , , and receive coil orientations.

Image of FIG. 5.

Click to view

FIG. 5.

Available open-circuit voltage and SAR distribution along the y = 0 slice of the model at 200 MHz and 1.7 GHz. The receiver is a 1-mm coil tilted is placed at a depth of 5 cm.

Image of FIG. 6.

Click to view

FIG. 6.

Received open circuit and received power as a function of the receive coil radius at 1 GHz and 1.7 GHz. The coil is oriented .

Loading

Article metrics loading...

/content/aip/journal/apl/101/7/10.1063/1.4745600
2012-08-13
2014-04-23

Abstract

We analyze wireless power transfer between a source and a weakly coupled implant on the heart. Numerical studies show that mid-field wireless powering achieves much higher power transfer efficiency than traditional inductively coupled systems. With proper system design, power sufficient to operate typical cardiac implants can be received by millimeter-sized coils.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/7/1.4745600.html;jsessionid=4bf7b43787ki3.x-aip-live-03?itemId=/content/aip/journal/apl/101/7/10.1063/1.4745600&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Wireless power transfer to a cardiac implant
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/7/10.1063/1.4745600
10.1063/1.4745600
SEARCH_EXPAND_ITEM