1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Influence of the spatial photocarrier generation profile on the performance of organic solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/7/10.1063/1.4745601
1.
1. J. Gilot, I. Barbu, M. M. Wienk, and R. A. J. Janssen, Appl. Phys. Lett. 91, 113520 (2007).
http://dx.doi.org/10.1063/1.2784961
2.
2. A. Roy, S. H. Park, S. Cowan, M. H. Tong, S. Cho, K. Lee, and A. J. Heeger, Appl. Phys. Lett. 95, 013302 (2009).
http://dx.doi.org/10.1063/1.3159622
3.
3. D. W. Zhao, P. Liu, X. W. Sun, S. T. Tan, L. Ke, and A. K. K. Kyaw, Appl. Phys. Lett. 95, 153304 (2009).
http://dx.doi.org/10.1063/1.3250176
4.
4. L. A. A. Pettersson, L. S. Roman, and O. Inganäs, J. Appl. Phys. 86, 487 (1999).
http://dx.doi.org/10.1063/1.370757
5.
5. J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, Adv. Mater. 18, 572 (2006).
http://dx.doi.org/10.1002/adma.200501825
6.
6. M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W.-M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, and K. Leo, Adv. Funct. Mater. 21, 3019 (2011).
http://dx.doi.org/10.1002/adfm.201002760
7.
7. C. Melzer, E. J. Koop, V. D. Mihailetchi, and P. M. Blom, Adv. Funct. Mater. 14, 865 (2004).
http://dx.doi.org/10.1002/adfm.200305156
8.
8. H. J. Snaith, N. C. Greenham, and R. H. Friend, Adv. Mater. 16, 1640 (2004).
http://dx.doi.org/10.1002/adma.200305766
9.
9. C. Pflumm, C. Karnutsch, M. Gerken, and U. Lemmer, IEEE J. Quantum. Electron. 41, 316 (2005).
http://dx.doi.org/10.1109/JQE.2004.841499
10.
10. N. S. Christ, S. W. Kettlitz, S. Valouch, S. Züfle, C. Gärtner, M. Punke, and U. Lemmer, J. Appl. Phys. 105, 104513 (2009).
http://dx.doi.org/10.1063/1.3130399
11.
11. L. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, and P. W. M. Blom, Phys. Rev. B 72, 085205 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.085205
12.
12. R. Hausermann, E. Knapp, M. Moos, N. A. Reinke, T. Flatz, and B. Ruhstaller, J. Appl. Phys. 106, 104507 (2009).
http://dx.doi.org/10.1063/1.3259367
13.
13. N. Christ, S. W. Kettlitz, S. Zfle, S. Valouch, and U. Lemmer, Phys. Rev. B 83, 195211 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.195211
14.
14. H.-L. Yip, S. K. Hau, N. S. Baek, and A. K.-Y. Jen, Appl. Phys. Lett. 92, 193313 (2008).
http://dx.doi.org/10.1063/1.2919524
15.
15. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nat. Photonics 3, 297 (2009).
http://dx.doi.org/10.1038/nphoton.2009.69
16.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/7/10.1063/1.4745601
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Simulated scaled J-V characteristics of the OSC with and without an additional 65 nm ZnO:Al layer between the absorber and the back electrode. The inset shows the absorption profile within the active layer under illumination with an AM1.5 spectrum for the two cases.

Image of FIG. 2.

Click to view

FIG. 2.

Schematic illustration of the centered (a) and the peripheral (b) absorption profile. Simulated hole current densities in case of the two different absorption profiles and an applied voltage of 0 V ((c) and (d)) and 0.7 V ((e) and (f)), respectively. The anode of the solar cell is to the left while the cathode is located on the right.

Image of FIG. 3.

Click to view

FIG. 3.

Simulated J-V characteristics of an OSC under illumination with centered and peripheral generation profile.

Image of FIG. 4.

Click to view

FIG. 4.

Simulated spatial distribution of the charge carrier densities and the electric field at an applied voltage of 0 V in case of centered absorption (a) and peripheral absorption (b).

Image of FIG. 5.

Click to view

FIG. 5.

Fill factor and normalized maximum power density of an OSC with different generation profiles. Absorption only takes place in an area of 20 nm. The center of absorption is shifted from the left side ( = 10 nm) to the right side ( = 80 nm).

Loading

Article metrics loading...

/content/aip/journal/apl/101/7/10.1063/1.4745601
2012-08-13
2014-04-20

Abstract

We investigate the impact of the interplay of charge carrier drift and diffusion on the fill factor of organic solar cells. Thin film interferences lead to strong gradients in the photocarrier generation profile. By means of numerical simulations, we show that the shape of the absorption profile is crucial for the efficiency of organic solar cells. High absorption in the peripheral areas of the active layer advantages an unfavorable diffusion current which leads to a reduction of the fill factor. Our work suggests design rules for the optical optimization of organic solar cells.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/7/1.4745601.html;jsessionid=8c6clsfrgk5ol.x-aip-live-03?itemId=/content/aip/journal/apl/101/7/10.1063/1.4745601&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Influence of the spatial photocarrier generation profile on the performance of organic solar cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/7/10.1063/1.4745601
10.1063/1.4745601
SEARCH_EXPAND_ITEM