1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Probing buried organic layers in organic light-emitting diodes under operation by electric-field-induced doubly resonant sum-frequency generation spectroscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/7/10.1063/1.4746273
1.
1. C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett. 51, 913 (1987).
http://dx.doi.org/10.1063/1.98799
2.
2. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 75, 4 (1999).
http://dx.doi.org/10.1063/1.124258
3.
3. T. Tsutsui, M. J. Yang, M. Yahiro, K. Nakamura, T. Watanabe, T. Tsuji, Y. Fukuda, T. Wakumoto, and S. Miyaguchi, Jpn. J. Appl. Phys. Part 2 38, L1502 (1999).
http://dx.doi.org/10.1143/JJAP.38.L1502
4.
4. T. Watanabe, K. Nakayama, S. Kawami, Y. Fukuda, T. Tsuji, T. Wakimoto, and S. Miyaguchi, Proc. SPIE 4105, 175 (2001).
http://dx.doi.org/10.1117/12.416892
5.
5. Y. R. Shen, Nature 337, 519 (1989).
http://dx.doi.org/10.1038/337519a0
6.
6. M. Raschke, M. Hayashi, S. H. Lin, and Y. R. Shen, Chem. Phys. Lett. 359, 367 (2002).
http://dx.doi.org/10.1016/S0009-2614(02)00560-2
7.
7. T. Manaka, E. Lim, R. Tamura, D. Yamada, and M. Iwamoto, Appl. Phys. Lett. 89, 072113 (2006).
http://dx.doi.org/10.1063/1.2335370
8.
8. T. Manaka, E. Lim, R. Tamura, and M. Iwamoto, Nat. Photonics 1, 581 (2007).
http://dx.doi.org/10.1038/nphoton.2007.172
9.
9. D. Taguchi, M. Weis, T. Manaka, and M. Iwamoto, Appl. Phys. Lett. 95, 263310 (2009).
http://dx.doi.org/10.1063/1.3277155
10.
10. E. Lim, T. Manaka, and M. Iwamoto, Chem. Phys. Lett. 516, 254 (2011).
http://dx.doi.org/10.1016/j.cplett.2011.09.044
11.
11. D. Taguchi, S. Inoue, L. Zhang, J. Li, M. Weis, T. Manaka, and M. Iwamoto, J. Phys. Chem. Lett. 1, 803 (2011).
http://dx.doi.org/10.1021/jz1000215
12.
12. H. Ye, A. Abu-Akeel, J. Huang, H. Kaz, and D. Gracias, J. Am. Chem. Soc. 128, 6528 (2006).
http://dx.doi.org/10.1021/ja060442w
13.
13. H. Ye, J. Huang, J.-R. Park, H. Kaz, and D. Gracias, J. Phys. Chem. C 111, 13250 (2007).
http://dx.doi.org/10.1021/jp072767k
14.
14. I. F. Nakai, M. Tachioka, A. Ugawa, T. Ueda, K. Watanabe, and Y. Matsumoto, Appl. Phys Lett. 95, 243304 (2009).
http://dx.doi.org/10.1063/1.3275805
15.
15. T. C. Anglin, D. B. O’Brien, and A. Massari, J. Phys. Chem. C 114, 17629 (2010).
http://dx.doi.org/10.1021/jp103636s
16.
16. T. C. Anglin, Z. Sohrabpour, and A. Massari, J. Phys. Chem. C 115, 20258 (2011).
http://dx.doi.org/10.1021/jp206523j
17.
17. T. Miyamae, E. Ito, Y. Noguchi, and H. Ishii, J. Phys. Chem. C 115, 9551 (2011).
http://dx.doi.org/10.1021/jp201051h
18.
18. T. Yamada, F. Rohlfing, and T. Tsutsui, Jpn. J. Appl. Phys. Part 1 39, 1382 (2000).
http://dx.doi.org/10.1143/JJAP.39.1382
19.
19. Y. Furukawa, K. Seto, K. Nakajima, Y. Itoh, J. Eguchi, T. Sugiyama, and H. Fijimura, Vib. Spectrosc. 60, 5 (2012).
http://dx.doi.org/10.1016/j.vibspec.2011.10.012
20.
20. G. G. Malliaras, J. R. Salem, P. J. Brock, and C. Scott, Phys. Rev. B 58, R13411 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.R13411
21.
21. H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. 11, 605 (1999).
http://dx.doi.org/10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q
22.
22. N. Kajimoto, T. Manaka, and M. Iwamoto, Chem. Phys. Lett. 430, 340 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.08.118
23.
23. K. Ozasa, S. Nemoto, T. Isoshima, E. Ito, M. Maeda, and M. Hara, Appl. Phys. Lett. 93, 263304 (2008).
http://dx.doi.org/10.1063/1.3058439
24.
24. Y. Noguchi, N. Sato, Y. Tanaka, Y. Nakayama, and H. Ishii, Appl. Phys. Lett. 92, 203306 (2008).
http://dx.doi.org/10.1063/1.2936084
25.
25. H. Aziz and Z. D. Popovic, Chem. Mater. 16, 4522 (2004).
http://dx.doi.org/10.1021/cm040081o
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/7/10.1063/1.4746273
Loading
/content/aip/journal/apl/101/7/10.1063/1.4746273
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/7/10.1063/1.4746273
2012-08-15
2014-12-26

Abstract

Electric-field-induced doubly resonant sum-frequency generation (EFI-DR-SFG) spectroscopy was used to study the electric field distribution in multilayer organic light-emitting diodes (OLEDs). Remarkable correlations between the DR-SFG signal enhancement and the applied bias voltage were observed. The SFG signals attributed to 4,4′-bis[N-(1-naphthyl-N-phenylamino)-biphenyl] were significantly enhanced by applying a forward voltage, whereas those from Alq were increased by applying a reverse voltage. The large enhancement in EFI-DR-SFG intensity enables us to nondestructively probe the local electric field distribution at the buried organic layer within the OLED.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/7/1.4746273.html;jsessionid=bnb3f9ql2crq4.x-aip-live-03?itemId=/content/aip/journal/apl/101/7/10.1063/1.4746273&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Probing buried organic layers in organic light-emitting diodes under operation by electric-field-induced doubly resonant sum-frequency generation spectroscopy
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/7/10.1063/1.4746273
10.1063/1.4746273
SEARCH_EXPAND_ITEM