1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Organic single crystal transistor characteristics of single-crystal phase pentacene grown by ionic liquid-assisted vacuum deposition
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/8/10.1063/1.4747148
1.
1. G. Malliaras and R. Friend, Phys. Today 58, 53 (2005).
http://dx.doi.org/10.1063/1.1995748
2.
2. H. Sirringhaus and M. Ando, MRS Bull. 33, 676 (2008).
http://dx.doi.org/10.1557/mrs2008.139
3.
3. A. C. Arias, J. D. MacKenzie, I. McCulloch, J. Rivnay, and A. Salleo, Chem. Rev. 110, 3 (2010).
http://dx.doi.org/10.1021/cr900150b
4.
4. G. Horowitz, X.-Z. Peng, D. Fichou, and F. Garnier, Synth. Met. 51, 419 (1992).
http://dx.doi.org/10.1016/0379-6779(92)90297-V
5.
5. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002).
http://dx.doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
6.
6. D. J. Gundlach, Y. Lin, T. N. Jackson, S. Nelson, and D. Schlom, IEEE Electron Device Lett. 18, 87 (1997).
http://dx.doi.org/10.1109/55.556089
7.
7. V. Podzorov, V. M. Pudalov, and M. E. Gershenson, Appl. Phys. Lett. 82, 1739 (2003).
http://dx.doi.org/10.1063/1.1560869
8.
8. R. W. I. de Boer, T. M. Klapwijk, and A. F. Morpurgo, Appl. Phys. Lett. 83, 4345 (2003).
http://dx.doi.org/10.1063/1.1629144
9.
9. J. Takeya, C. Goldmann, S. Haas, K. P. Pernstich, B. Ketterer, and B. Batlogg, J. Appl. Phys. 94, 5800 (2003).
http://dx.doi.org/10.1063/1.1618919
10.
10. T. Hasegawa and J. Takeya, Sci. Technol. Adv. Mater. 10, 024314 (2009).
http://dx.doi.org/10.1088/1468-6996/10/2/024314
11.
11. V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, Science 303, 1644 (2004).
http://dx.doi.org/10.1126/science.1094196
12.
12. A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, Nature (London) 444, 913 (2006).
http://dx.doi.org/10.1038/nature05427
13.
13. J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, and S. Ogawa, Appl. Phys. Lett. 90, 102120 (2007).
http://dx.doi.org/10.1063/1.2711393
14.
14. K. Nakayama, Y. Hirose, J. Soeda, M. Yoshizumi, T. Uemura, M. Uno, W. Li, M. J. Kang, M. Yamagishi, Y. Okada, E. Miyazaki, Y. Nakazawa, A. Nakao, K. Takimiya, and J. Takeya, Adv. Mater. 23, 1626 (2011).
http://dx.doi.org/10.1002/adma.201004387
15.
15. H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi, S. Haas, R. Chiba, R. Kumai, and T. Hasegawa, Nature (London) 475, 364 (2011).
http://dx.doi.org/10.1038/nature10313
16.
16. K. S. Yun, B. D. Choi, Y. Matsumoto, J. H. Song, N. Kanda, T. Itoh, M. Kawasaki, T. Chikyow, P. Ahmet, and H. Koinuma, Appl. Phys. Lett. 80, 61 (2002).
http://dx.doi.org/10.1063/1.1432111
17.
17. Y. Ishii, T. Shimada, N. Okazaki, and T. Hasegawa, Langmuir 23, 6864 (2007).
http://dx.doi.org/10.1021/la700242w
18.
18. M. Voigt, S. Dorsfeld, A. Volz, and M. Sokolowski, Phys. Rev. Lett. 91, 026103 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.026103
19.
19. Y. Takeyama, S. Maruyama, and Y. Matsumoto, Cryst. Growth Des. 11, 2273 (2011).
http://dx.doi.org/10.1021/cg101686q
20.
20. M. Galinski, A. Lewandowski, and I. Stepniak, Electrochim. Acta 51, 5567 (2006).
http://dx.doi.org/10.1016/j.electacta.2006.03.016
21.
21. S. Ono, S. Seki, R. Hirahara, Y. Tominari, and J. Takeya, Appl. Phys. Lett. 92, 103313 (2008).
http://dx.doi.org/10.1063/1.2898203
22.
22. S. Ono, N. Minder, Z. Chen, A. Facchetti, and A. F. Morpurgo, Appl. Phys. Lett. 97, 143307 (2010).
http://dx.doi.org/10.1063/1.3493190
23.
23. S. Yaginuma, K. Itaka, M. Haemori, M. Katayama, K. Ueno, T. Ohnishi, M. Lippmaa, Y. Matsumoto, and H. Koinuma, Appl. Phys. Express 1, 015005 (2008).
http://dx.doi.org/10.1143/APEX.1.015005
24.
24. Y. Takeyama, S. Maruyama, and Y. Matsumoto, Sci. Technol. Adv. Mater. 12, 054210 (2011).
http://dx.doi.org/10.1088/1468-6996/12/5/054210
25.
25. S. Ono, K. Miwa, S. Seki, and J. Takeya, Appl. Phys. Lett. 94, 063301 (2009).
http://dx.doi.org/10.1063/1.3079401
26.
26. G. Gu, M. G. Kane, J. E. Doty, and A. H. Firester, Appl. Phys. Lett. 87, 243512 (2005).
http://dx.doi.org/10.1063/1.2146059
27.
27. J. Y. Lee, S. Roth, and Y. W. Park, Appl. Phys. Lett. 88, 252106 (2006).
http://dx.doi.org/10.1063/1.2216400
28.
28. L. B. Roberson, J. Kowalik, L. M. Tolbert, C. Kloc, R. Zeis, X. Chi, R. Fleming, and C. Wilkins, J. Am. Chem. Soc. 127, 3069 (2005).
http://dx.doi.org/10.1021/ja044586r
29.
29. O. D. Jurchescu, M. Popinciuc, B. J. van Wees, and T. T. M. Palstra, Adv. Mater. 19, 688 (2007).
http://dx.doi.org/10.1002/adma.200600929
30.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/8/10.1063/1.4747148
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) A scheme of the IL-assisted vacuum deposition using a CW-IR laser deposition technique. (b) A photograph of the pentacene microcrystals grown in the IL. The inset is an AFM image of the pentacene crystal surface (the scale bar is 1 m).

Image of FIG. 2.

Click to view

FIG. 2.

Results of TOF-SIMS measurements of the pentacene crystal. (a) The mass spectrum that was first taken for a set of fresh pentacene single crystals on an α-AlO substrate. (b) The secondary ion intensity ratio of PQ to PN was compared between those for as-delivered pentacene powder, a single crystal via IL, and a polycrystalline film. (c) The time dependence of the secondary ion intensities of “F” and “S,” together with those of “C” and “AlO” for comparison.

Image of FIG. 3.

Click to view

FIG. 3.

(a) A photograph of the fabricated SC-FET, along with a schematic of the device structure. (b) The transfer characteristics (I-V) at V =−0.3 (red), −0.2 (blue), and −0.1(green) V, showing typical p-type characteristics; Inset: the logarithmic plot of (b), showing the on/off current ratio of 104 or above.

Image of FIG. 4.

Click to view

FIG. 4.

The values plotted as a function of at a of −0.1 V. The average of the values for below −0.1 V at each plotted as a function of (the error bars mean the standard deviation).

Loading

Article metrics loading...

/content/aip/journal/apl/101/8/10.1063/1.4747148
2012-08-21
2014-04-19

Abstract

Organic transistor characteristics of single-crystal phase pentacene were investigated. Ionic liquids (ILs) were used as not only a gate dielectric material in the transistors but also a crystallization solvent in vacuum deposition of pentacene. The crystal sizes reached 200 m and their surface exhibits a molecularly step-and-terrace structure. There was no sign of IL molecules inside the crystal, and the impurity level of 6,13-pentacenequinone was also reduced. The average value of the field-effect mobility was not so inferior to those for the conventional pentacene single crystals, and the highest value exceeded 5 cm2/Vs, with the on/off current ratio of 104.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/8/1.4747148.html;jsessionid=iz7yh23doyqb.x-aip-live-06?itemId=/content/aip/journal/apl/101/8/10.1063/1.4747148&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Organic single crystal transistor characteristics of single-crystal phase pentacene grown by ionic liquid-assisted vacuum deposition
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/8/10.1063/1.4747148
10.1063/1.4747148
SEARCH_EXPAND_ITEM