1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Resonant transmission of light through ZnO nanowaveguides in a silver film
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/8/10.1063/1.4747718
1.
1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
http://dx.doi.org/10.1038/35570
2.
2. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, Phys. Rev. Lett. 86, 1114 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.1114
3.
3. C. Genet and T. W. Ebbesen, Nature 445, 39 (2007).
http://dx.doi.org/10.1038/nature05350
4.
4. F. J. García de Abajo, Rev. Mod. Phys. 79, 1267 (2007).
http://dx.doi.org/10.1103/RevModPhys.79.1267
5.
5. H. Liu and P. Lalanne, Nature 452, 728 (2008).
http://dx.doi.org/10.1038/nature06762
6.
6. F. J. García-Vidal, L. Martín-Moreno, T. W. Ebbesen, and L. Kuipers, Rev. Mod. Phys. 82, 729 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.729
7.
7. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
http://dx.doi.org/10.1038/nature01937
8.
8. S. A. Maier, Nature Photon. 2, 460 (2008).
http://dx.doi.org/10.1038/nphoton.2008.144
9.
9. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997).
http://dx.doi.org/10.1364/OL.22.000475
10.
10. X. Shi, L. Hesselink, and R. L. Thornton, Opt. Lett. 28, 1320 (2003).
http://dx.doi.org/10.1364/OL.28.001320
11.
11. N. A. Janunts, K. S. Baghdasaryan, Kh. V. Nerkararyan, and B. Hecht, Opt. Commun. 253, 118 (2005).
http://dx.doi.org/10.1016/j.optcom.2005.04.076
12.
12. E. X. Jin and X. Xu, Appl. Phys. Lett. 86, 111106 (2005).
http://dx.doi.org/10.1063/1.1875747
13.
13. H. Choi, D. F. Pile, S. Nam, G. Bartal, and X. Zhang, Opt. Express 17, 7519 (2009).
http://dx.doi.org/10.1364/OE.17.007519
14.
14. R. de Waele, S. P. Burgos, A. Polman, and H. A. Atwater, Nano Lett. 9, 2832 (2009).
http://dx.doi.org/10.1021/nl900597z
15.
15. P. Banzer, J. Kindler, S. Quabis, U. Peschel, and G. Leuchs, Opt. Express 18, 10896 (2010).
http://dx.doi.org/10.1364/OE.18.010896
16.
16. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nature Mater. 2, 229 (2003).
http://dx.doi.org/10.1038/nmat852
17.
17. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, Nano Lett. 5, 1726 (2005).
http://dx.doi.org/10.1021/nl051013j
18.
18. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nature Photon. 2, 496 (2008).
http://dx.doi.org/10.1038/nphoton.2008.131
19.
19. N. Liu, M. L. Tang, M. Hentschel, H. Giessen, and A. P. Alivisatos, Nature Mater. 10, 631 (2011).
http://dx.doi.org/10.1038/nmat3029
20.
20. L. Novotny and N. van Hulst, Nature Photon. 5, 83 (2011).
http://dx.doi.org/10.1038/nphoton.2010.237
21.
21. F. J. García de Abajo, Opt. Express 10, 1475 (2002).
22.
22. J. Olkkonen, K. Kataja, and D. G. Howe, Opt. Express 13, 6980 (2005).
http://dx.doi.org/10.1364/OPEX.13.006980
23.
23. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, Phys. Rev. Lett. 95, 103901 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.103901
24.
24. H. Shin, P. B. Catrysse, and S. Fan, Phys. Rev. B 72, 085436 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.085436
25.
25. H. Xu, P. Zhu, H. G. Craighead, and W. W. Webb, Opt. Commun. 282, 1467 (2009).
http://dx.doi.org/10.1016/j.optcom.2008.12.036
26.
26. M. G. Velasco, P. Cassidy, and H. Xu, Opt. Commun. 284, 4805 (2011).
http://dx.doi.org/10.1016/j.optcom.2011.06.006
27.
27. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, Angew. Chem., Int. Ed. 42, 3031 (2003).
http://dx.doi.org/10.1002/anie.200351461
28.
28. L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, Nano Lett. 5, 1231 (2005).
http://dx.doi.org/10.1021/nl050788p
29.
29. L. Vayssieres, Adv. Mater. 15, 464 (2003).
http://dx.doi.org/10.1002/adma.200390108
30.
30. See supplementary material at http://dx.doi.org/10.1063/1.4747718 for S1: details of finite element simulations. S2: electric field distributions obtained from simulations. [Supplementary Material]
31.
31. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, Science 299, 682 (2003).
http://dx.doi.org/10.1126/science.1079700
32.
32. L. Pollack and W. W. Webb, Nat. Biotechnol. 28, 564 (2010).
http://dx.doi.org/10.1038/nbt0610-564
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/8/10.1063/1.4747718
Loading
/content/aip/journal/apl/101/8/10.1063/1.4747718
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/8/10.1063/1.4747718
2012-08-23
2014-12-21

Abstract

Zinc oxide (ZnO) nanowaveguides of 40 nm in diameter are fabricated by embedding ZnOnanowires vertically grown on a glass substrate in a silver film. Resonant transmission through these nanowaveguides is observed for incident wavelengths around 500 nm. As the ZnO nanowaveguide diameter increases, the transmission resonance shifts toward longer wavelengths with increased amplitude. We attribute the observed resonant transmission to the unique material combination used enabling the excitation of localized surface plasmons.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/8/1.4747718.html;jsessionid=3dvqa6u67khx1.x-aip-live-06?itemId=/content/aip/journal/apl/101/8/10.1063/1.4747718&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Resonant transmission of light through ZnO nanowaveguides in a silver film
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/8/10.1063/1.4747718
10.1063/1.4747718
SEARCH_EXPAND_ITEM