1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Response delay caused by dielectric relaxation of polymer insulators for organic transistors and resolution method
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/8/10.1063/1.4747804
1.
1. M. Kawasaki, S. Imazeki, M. Ando, Y. Sekiguchi, S. Hirota, S. Uemura, and T. Kamata, IEEE Trans. Electron Devices 53, 435 (2006).
http://dx.doi.org/10.1109/TED.2005.864371
2.
2. H. Edzer, A. Huitema, G. H. Gelinck, J. B. P. H. van der Putten, K. E. Kuijk, C. M. Hart, E. Cantatore, and D. M. de Leeuw, Adv. Mater. 14, 1201 (2002).
http://dx.doi.org/10.1002/1521-4095(20020903)14:17<1201::AID-ADMA1201>3.0.CO;2-5
3.
3. R. Schroeder, L. A. Majewski, and M. Grell, Adv. Mater. 17, 1535 (2005).
http://dx.doi.org/10.1002/adma.200401398
4.
4. M. L. Chabinyc and A. Salleo, Chem. Mater. 16, 4509 (2004).
http://dx.doi.org/10.1021/cm049647z
5.
5. T. W. Kelley, P. F. Baude, C. Gerlach, D. E. Ender, D. Muyres, M. A. Haase, D. E. Vogel, and S. D. Theiss, Chem. Mater. 16, 4413 (2004).
http://dx.doi.org/10.1021/cm049614j
6.
6. P. F. Baude, D. A. Ender, M. A. Haase, T. W. Kelley, D. V. Muyres, and S. D. Theiss, Appl. Phys. Lett. 82, 3964 (2003).
http://dx.doi.org/10.1063/1.1579554
7.
7. R. Rotzoll, S. Mohapatra, V. Olariu, R. Wenz, M. Grigas, K. Dimmler, O. Shchekin, and A. Dodabalapur, Appl. Phys. Lett. 88, 123502 (2006).
http://dx.doi.org/10.1063/1.2186384
8.
8. A. Dodabalapur, Mater. Today 9, 24 (2006).
http://dx.doi.org/10.1016/S1369-7021(06)71444-4
9.
9. T. Someya, H. E. Katz, A. Gelperin, A. J. Lovinger, and A. Dodabalapur, Appl. Phys. Lett. 81, 3079 (2002).
http://dx.doi.org/10.1063/1.1514826
10.
10. I. Manunza, A. Sulis, and A. Bonfiglio, Appl. Phys. Lett. 89, 143052 (2006).
http://dx.doi.org/10.1063/1.2357924
11.
11. A. Loi, I. Manunza, and A. Bonfiglio, Appl. Phys. Lett. 86, 103512 (2005).
http://dx.doi.org/10.1063/1.1873051
12.
12. J. Veres, S. D. Ogier, S. W. Leeming, D. C. Cupertino, and S. M. Khaffaf, Adv. Funct. Mater. 13, 199 (2003).
http://dx.doi.org/10.1002/adfm.200390030
13.
13. C. A. Lee, D. W. Park, S. H. Jin, I. H. Park, J. D. Lee, and B.-G. Park, Appl. Phys. Lett. 88, 252102 (2006).
http://dx.doi.org/10.1063/1.2213969
14.
14. X. Zhang, S. P. Tiwari, and B. Kippelen, Org. Electron. 10, 1133 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.06.001
15.
15. K. M. Ngai and C. M. Roland, Macromolecules 26, 6824 (1993).
http://dx.doi.org/10.1021/ma00077a019
16.
16. S. Havriliak and S. Negami, Polymer 8, 161 (1967).
http://dx.doi.org/10.1016/0032-3861(67)90021-3
17.
17. D. Khodagholy, M. Gurfinkel, E. Stavrinidou, P. Leleux, T. Herve, S. Sanaur, and G. G. Malliaras, Appl. Phys. Lett. 99, 163304 (2011).
http://dx.doi.org/10.1063/1.3652912
18.
18. L. Dunn, D. Basu, L. Wang, and A. Dodabalapur, Appl. Phys. Lett. 88, 063507 (2006).
http://dx.doi.org/10.1063/1.2172023
19.
19. M. E. Baird, Prog. Polym. Sci. 1, 161 (1967).
http://dx.doi.org/10.1016/0079-6700(67)90004-4
20.
20. K. Suemori, M. Taniguchi, S. Uemura, M. Yoshida, S. Hoshino, N. Takada, T. Kodzasa, and T. Kamata, Appl. Phys. Express 1, 061801 (2008).
http://dx.doi.org/10.1143/APEX.1.061801
21.
21. D. Knipp, R. A. Street, A. Völkel, and J. Ho, J. Appl. Phys. 93, 347 (2003).
http://dx.doi.org/10.1063/1.1525068
22.
22. A. Salleo and R. A. Street, J. Appl. Phys. 94, 471 (2003).
http://dx.doi.org/10.1063/1.1581352
23.
23. K. Suemori, S. Uemura, M. Yoshida, S. Hoshino, T. Kodzasa, and T. Kamata, Appl. Phys. Lett. 93, 033308 (2008).
http://dx.doi.org/10.1063/1.2957987
24.
24. K. Suemori, S. Uemura, M. Yoshida, S. Hoshino, N. Takada, T. Kodzasa, and T. Kamata, Appl. Phys. Lett. 91, 192112 (2007).
http://dx.doi.org/10.1063/1.2812573
25.
25.Generally, the bias stress effect causes shifts in threshold voltage without changing mobility. Thus, the bias stress effect can be estimated by the shift in threshold voltage after the application of gate voltage over a long time period. In the case of an OFET with SiO2, this threshold voltage shift was 2.6 V after the application of −20 V of VG for 1800 s. However, in the case of an OFET with PVT/SiO2, the shift was suppressed to 0.8 V.
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/8/10.1063/1.4747804
Loading
/content/aip/journal/apl/101/8/10.1063/1.4747804
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/8/10.1063/1.4747804
2012-08-23
2014-10-26

Abstract

We investigated the effect of dielectric relaxation in polymer gate insulators on the device characteristics of organic field effect transistors. Dielectric relaxation of polymer gate insulators caused an increase in drain current () in a period starting immediately after the application of the gate voltage () and lasting several milliseconds. This induced an apparent delay in the response of . Based on the observed results, we suggested an ideal gate insulator to achieve organic field effect transistors that have a fast response and high performance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/8/1.4747804.html;jsessionid=h94gommqn6ai8.x-aip-live-02?itemId=/content/aip/journal/apl/101/8/10.1063/1.4747804&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Response delay caused by dielectric relaxation of polymer insulators for organic transistors and resolution method
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/8/10.1063/1.4747804
10.1063/1.4747804
SEARCH_EXPAND_ITEM