1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Time-of-flight mobility of charge carriers in position-dependent electric field between coplanar electrodes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/9/10.1063/1.4742149
1.
1. T. Muck, V. Wagner, U. Bass, M. Leufgen, J. Geurts, and L. W. Molenkamp, Synth. Met. 146(3 ), 317320 (2004);
http://dx.doi.org/10.1016/j.synthmet.2004.08.010
1. F. Dinelli, M. Murgia, P. Levy, M. Cavallini, F. Biscarini, and D. M. de Leeuw, Phys. Rev. Lett. 92(11 ), 116802 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.116802
2.
2. J. Day, S. Subramanian, J. E. Anthony, Z. Lu, R. J. Twieg, and O. Ostroverkhova, J. Appl. Phys. 103(12 ), 123715 (2008);
http://dx.doi.org/10.1063/1.2946453
2. A. Rybak, J. Pfleger, J. Jung, M. Pavlik, I. Glowacki, J. Ulanski, Z. Tomovic, K. Müllen, and Y. Geerts, Synth. Met. 156, 302309 (2006);
http://dx.doi.org/10.1016/j.synthmet.2005.12.007
2. M. Kitamura, T. Imada, S. Kako, and Y. Arakawa, Jpn. J. Appl. Phys. Part 1 43(4B ), 23262329 (2004);
http://dx.doi.org/10.1143/JJAP.43.2326
2. T. Yoshikawa, T. Nagase, T. Kobayashi, S. Murakami, and H. Naito, Thin Solid Films 516(9 ), 25952599 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.04.156
3.
3. W. Shockley, J. Appl. Phys. 9(10 ), 635636 (1938).
http://dx.doi.org/10.1063/1.1710367
4.
4. K. J. Binns and P. J. Lawrenson, Analysis and Computation of Electric and Magnetic Field Problems, 2nd ed. (Pergamon, Oxford, 1978).
5.
5. M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers (Oxford University Press, 1999).
6.
6. H. N. Tsao, D. Cho, J. W. Andreasen, A. Rouhanipour, D. W. Breiby, W. Pisula, and K. Muellen, Adv. Mater. 21(2 ), 209 (2009).
http://dx.doi.org/10.1002/adma.200802032
7.
7. H. Bässler, Phys. Status Solidi B 175(1 ), 1556 (1993).
http://dx.doi.org/10.1002/pssb.2221750102
8.
8. E. Pavlica and G. Bratina, Phys. Status Solidi B 243(2 ), 473482 (2006).
http://dx.doi.org/10.1002/pssb.200541111
9.
9. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, Nature 401(6754 ), 685688 (1999).
http://dx.doi.org/10.1038/44359
10.
10. H. N. Tsao, D. M. Cho, I. Park, M. R. Hansen, A. Mavrinskiy, D. Y. Yoon, R. Graf, W. Pisula, H. W. Spiess, and K. Mullen, J. Am. Chem. Soc. 133(8 ), 26052612 (2011).
http://dx.doi.org/10.1021/ja108861q
11.
11. S. Verlaak and P. Heremans, Phys. Rev. B 75(11 ), 115127 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.115127
12.
12. J. C. Scott, L. T. Pautmeier, and L. B. Schein, Phys. Rev. B 46(13 ), 86038606 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.8603
13.
13. L. Pautmeier, R. Richert, and H. Bässler, Philos. Mag. B 63(3 ), 587601 (1991).
http://dx.doi.org/10.1080/13642819108225974
14.
14. P. Borsenberger, L. Pautmeier, and H. Bässler, Phys. Rev. B 46(19 ), 1214512153 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.12145
15.
15. M. Brinkmann, J. Polym. Sci., Part B: Polym. Phys. 49(17 ), 12181233 (2011).
http://dx.doi.org/10.1002/polb.22310
16.
16. S. Joshi, P. Pingel, S. Grigorian, T. Panzner, U. Pietsch, D. Neher, M. Forster, and U. Scherf, Macromolecules 42(13 ), 46514660 (2009).
http://dx.doi.org/10.1021/ma900021w
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/9/10.1063/1.4742149
Loading
/content/aip/journal/apl/101/9/10.1063/1.4742149
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/9/10.1063/1.4742149
2012-08-29
2014-11-21

Abstract

Time-of-flight measurements of the photocurrent in thin organic semiconductor layers represent an effective way to extract charge carrier mobility. A common method to interpret the time-dependence of the photocurrent in these material systems assumes a position-independent electric field between two coplanar electrodes. In this letter, we compare time-dependence of the photocurrent, measured in the samples comprising thin layers of poly-3-hexylthiophene, with the Monte Carlo simulations. In the simulations, we have used both, a position-independent and a position-dependent electric field. We obtained a favorable agreement between the simulations and the measurements only in the case of position-dependent electric field. We demonstrate that the charge carrier mobility may be underestimated by more than one order of magnitude, if a position-independent electric field is used in the calculations of the mobility.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/9/1.4742149.html;jsessionid=1bjt959jqj8xn.x-aip-live-06?itemId=/content/aip/journal/apl/101/9/10.1063/1.4742149&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Time-of-flight mobility of charge carriers in position-dependent electric field between coplanar electrodes
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/9/10.1063/1.4742149
10.1063/1.4742149
SEARCH_EXPAND_ITEM