1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Non-destructive imaging of an individual protein
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/9/10.1063/1.4748113
1.
1. W. Chiu, T. W. Jeng, L. L. Degn, R. Grant, M. F. Schmid, and B. V. V. Prasad, Ultramicroscopy 23(2 ), 232 (1987).
http://dx.doi.org/10.1016/0304-3991(87)90172-0
2.
2. H. N. Chapman, S. Bajt, A. Barty, W. H. Benner, M. J. Bogan, M. Frank, S. P. Hau-Riege, R. A. London, S. Marchesini, E. Spiller et al., in Proceedings of FEL 2006, BESSY, Berlin, Germany (2006), p. 805.
3.
3. M. Marvin Seibert, T. Ekeberg, F. R. N. C. Maia, M. Svenda, J. Andreasson, O. Jonsson, D. Odic, B. Iwan, A. Rocker, D. Westphal et al., Nature (London) 470(7332 ), 78 (2011).
http://dx.doi.org/10.1038/nature09748
4.
4. R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu, Nature (London) 406(6797 ), 752 (2000).
http://dx.doi.org/10.1038/35021099
5.
5. J. W. Miao, H. N. Chapman, J. Kirz, D. Sayre, and K. O. Hodgson, Annu. Rev. Biophys. Biomol. Struct. 33, 157 (2004).
http://dx.doi.org/10.1146/annurev.biophys.33.110502.140405
6.
6. M. Germann, T. Latychevskaia, C. Escher, and H.-W. Fink, Phys. Rev. Lett. 104(9 ), 095501 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.095501
7.
7. H. W. Fink, H. Schmid, E. Ermantraut, and T. Schulz, J. Opt. Soc. Am. A 14(9 ), 2168 (1997).
http://dx.doi.org/10.1364/JOSAA.14.002168
8.
8. G. B. Stevens, M. Krüger, T. Latychevskaia, P. Lindner, A. Plückthun, and H. Fink, Eur. Biophys. J. 40, 1197 (2011).
http://dx.doi.org/10.1007/s00249-011-0743-y
9.
9. H. W. Fink, in Electron Microscopy 1994: Interdisciplinary Developments and Tools, edited by B. Jouffrey and C. Colliex (1994), Vol. 1, p. 319.
10.
10. H. W. Fink, Phys. Scr. 38(2 ), 260 (1988).
http://dx.doi.org/10.1088/0031-8949/38/2/029
11.
11. H.-W. Fink, W. Stocker, and H. Schmid, Phys. Rev. Lett. 65(10 ), 1204 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.1204
12.
12. T. Latychevskaia and H.-W. Fink, Opt. Express 17(13 ), 10697 (2009).
http://dx.doi.org/10.1364/OE.17.010697
13.
13. D. M. Lawson, P. J. Artymiuk, S. J. Yewdall, J. M. A. Smith, J. Craig Livingstone, A. Treffry, A. Luzzago, S. Levi, P. Arosio, G. Cesareni et al., Nature (London) 349(6309 ), 541 (1991).
http://dx.doi.org/10.1038/349541a0
14.
14. E. C. Theil, Annu. Rev. Biochem. 56(1 ), 289 (1987).
http://dx.doi.org/10.1146/annurev.bi.56.070187.001445
15.
15. K. Jellinger, W. Paulus, I. Grundke-Iqbal, P. Riederer, and M. Youdim, J. Neural Transm.: Parkinson’s Dis. Dementia Sect. 2(4 ), 327 (1990).
http://dx.doi.org/10.1007/BF02252926
16.
16. S. Mann, J. V. Bannister, and R. J. P. Williams, J. Mol. Biol. 188(2 ), 225 (1986).
http://dx.doi.org/10.1016/0022-2836(86)90307-4
17.
17. T. Kawasaki, J. Endo, T. Matsuda, N. Osakabe, and A. Tonomura, J. Electron microsc. 35(3 ), 211 (1986).
18.
18. H. Lichte and M. Lehmann, in Advances in Imaging and Electron Physics, edited by P. Georgio Merli, G. Calestani, P. W. Hawkes, and V.-A. Marco (Elsevier, 2002), Vol. 123, p. 225.
19.
19. C. Quintana, J. M. Cowley, and C. Marhic, J. Struct. Biol. 147(2 ), 166 (2004).
http://dx.doi.org/10.1016/j.jsb.2004.03.001
20.
20. T. Latychevskaia and H.-W. Fink, Phys. Rev. Lett. 98(23 ), 233901 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.233901
21.
21. O. Bryngdah and A. Lohmann, J. Opt. Soc. Am. 58(5 ), 620 (1968).
http://dx.doi.org/10.1364/JOSA.58.000620
22.
22. M. van Heel, B. Gowen, R. Matadeen, E. V. Orlova, R. Finn, T. Pape, D. Cohen, H. Stark, R. Schmidt, M. Schatz et al., Q. Rev. Biophys. 33(4 ), 307 (2000).
http://dx.doi.org/10.1017/S0033583500003644
23.
23. T. Latychevskaia, J. N. Longchamp, and H.-W. Fink, e-print arXiv 1106.1320v1 (2011).
24.
24. E. Steinwand, J. N. Longchamp, and H. W. Fink, Ultramicroscopy 110(9 ), 1148 (2010).
http://dx.doi.org/10.1016/j.ultramic.2010.04.013
25.
25. E. Steinwand, J.-N. Longchamp, and H.-W. Fink, Ultramicroscopy 111(4 ), 282 (2011).
http://dx.doi.org/10.1016/j.ultramic.2010.12.018
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/9/10.1063/1.4748113
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Conduction electrons confined in a pointed W(111) single crystal wire are field emitted into vacuum at an atomic-sized emission area providing a coherent low-energy electron point source (PS). At the less than 1micron distant object-plane (OP), part of the coherent electron wave is scattered by a ferritin attached to a carbon nanotube (inset) constituting the object wave indicated in red. At a 68 mm distant detector screen (S), the far-field interference pattern between object- (red) and reference-wave (blue)—the hologram—is recorded and its digital record is subject to the numerical reconstruction of the protein.

Image of FIG. 2.

Click to view

FIG. 2.

(a) 53 eV kinetic energy electron hologram of several ferritin molecules attached to a bundle of carbon nanotubes. (b) Reconstruction of (a) obtained at 740 nm distance from the electron source. (c) Close-up of (b).

Image of FIG. 3.

Click to view

FIG. 3.

(a) 57 eV kinetic energy electron hologram of individual ferritin molecules attached to a bundle of carbon nanotubes. (b) Side-band holography reconstruction of (a). (c) Close-up of (b). (d) TEM image of the very same ferritin molecule. (e) The same data as the close-up in (c) with changed gamma value to enhance the visibility of the contour of the ferritin. (f)Reconstruction of the ferritin hologram recorded after TEM exposure displayed with the same gamma value as in (e).

Loading

Article metrics loading...

/content/aip/journal/apl/101/9/10.1063/1.4748113
2012-08-27
2014-04-19

Abstract

Imaging a single biomolecule at atomic resolution without averaging over different conformations is the ultimate goal in structural biology. We report recordings of a protein at nanometer resolution obtained from one individual ferritin by means of low-energy electron holography. One single protein could be imaged for an extended period of time without any sign of radiation damage. Since the fragile protein shell encloses a robust iron cluster, the holographicreconstructions could also be cross-validated against transmission electron microscopyimages of the very same molecule by imaging its iron core.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/9/1.4748113.html;jsessionid=3bnf0e4loitps.x-aip-live-03?itemId=/content/aip/journal/apl/101/9/10.1063/1.4748113&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Non-destructive imaging of an individual protein
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/9/10.1063/1.4748113
10.1063/1.4748113
SEARCH_EXPAND_ITEM