1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Magnetic-field dependent differential capacitance of polymer diodes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/9/10.1063/1.4748797
1.
1. J. Kalinowski, M. Cochi, D. Virgili, P. Di Marco, and V. Fattori, Chem. Phys. Lett. 380, 710 (2003).
http://dx.doi.org/10.1016/j.cplett.2003.09.086
2.
2. O. Mermer, G. Veeraraghavan, T. L. Francis, Y. Sheng, D. T. Nguyen, M. Wohlgenannt, A. Kohler, M. K. Al-Suti, and M. S. Khan, Phys. Rev. B 72, 205202 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.205202
3.
3. P. Desai, P. Shakaya, T. Kreouzis, and W. P. Gillin, Phys. Rev. B 76, 235202 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.235202
4.
4. T. L. Francis, O. Mermer, G. Veeraraghavan, and M. Wohlgenannt, New J. Phys. 6, 185 (2004).
http://dx.doi.org/10.1088/1367-2630/6/1/185
5.
5. T. D. Nguyen, G. Hukic-Makkosian, F. Wang, L. Wojcik, X.-G. Li, E. Ehrenfreund, and Z. V. Vardeny, Nature Mater. 9, 345 (2010).
http://dx.doi.org/10.1038/nmat2633
6.
6. V. N. Prigodin, J. D. Bergeson, D. M. Lincoln, and A. J. Epstein, Synth. Met. 156, 757 (2006).
http://dx.doi.org/10.1016/j.synthmet.2006.04.010
7.
7. A. J. Schellekens, W. Wagemans, S. P. Kersten, P. A. Bobbert, and B. Koopmans, Phys. Rev. B 84, 075204 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.075204
8.
8. B. Hu and Y. Wu, Nature Mater. 6, 985 (2007).
http://dx.doi.org/10.1038/nmat2034
9.
9. D. R. McCamey, K. J. van Schooten, W. J. Baker, S.-Y. Lee, S. Y. Paik, J. M. Lupton, and C. Boehme, Phys. Rev. Lett. 104, 07601 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.017601
10.
10. D. R. McCamey, S.-Y. Lee, S.-Y. Paik, J. M. Lupton, and C. Boehme, Phys. Rev. B 82, 125206 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.125206
11.
11. P. Desai, P. Shakya, T. Kreouzis, W. P. Gillin, N. A. Morley, and M. R. J. Gibbs, Phys. Rev. B 75, 094423 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.094423
12.
12. J. Y. Song, N. Stingelin, A. J. Drew, T. Kreouzis, and W. P. Gillin, Phys. Rev. B 82, 085205 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.085205
13.
13. W. J. Baker, D. R. McCamey, K. J. van Schooten, J. M. Lupton, and C. Boehme, Phys. Rev. B 84, 165205 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.165205
14.
14. P. A. Bobbert, T. D. Nguyen, F. W. A. van Oost, B. Koopmans, and M. Wohlgenannt, Phys. Rev. Lett. 99, 216801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.216801
15.
15. F. Wang, J. Rybicki, K. A. Hutchinson, and M. Wohlgenannt, Phys. Rev. B 83, 241202 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.241202
16.
16. F. Li, L. Xin, S. Liu, and B. Hu, Appl. Phys. Lett. 97, 073301 (2010).
http://dx.doi.org/10.1063/1.3478014
17.
17. T. K. Djidjou, T. Basel, and A. Rogachev, J. Appl. Phys. 112, 024511 (2012).
http://dx.doi.org/10.1063/1.4737773
18.
18. M. Ershov, H. C. Liu, L. Li, M. Buchanan, Z. R. Wasilewski, A. K. Jonscher, IEEE Trans. Electron Devices 45, 2196 (1998).
http://dx.doi.org/10.1109/16.725254
19.
19. J. Bisquert, G. Garcia-Belmonte, A. Pitarch, and H. J. Bolink, Chem. Phys. Lett. 422, 184 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.02.060
20.
20. Y. Y. Lin, F.-M. Yang, C.-Y. Huang, W.-Y. Chou, J. Chang, and Y.-C. Lien, Appl. Phys. Lett. 91, 092127 (2007).
http://dx.doi.org/10.1063/1.2777147
21.
21. K. C. Kao and W. Hwang, Electrical Transport in Solids (Pergamon, Oxford, 1981).
22.
22. M. A. Baldo and S. R. Forrest, Phys. Rev. B 64, 085201 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.085201
23.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/9/10.1063/1.4748797
Loading
/content/aip/journal/apl/101/9/10.1063/1.4748797
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/9/10.1063/1.4748797
2012-08-28
2014-09-02

Abstract

Using admittance spectroscopy, we found that bipolar organic diodes based on pi-conjugated polymer, 2-methoxy-5-(2′-ethylhexyloxy), MEH-PPV, have strong divergent contribution to the device differential capacitance. It is positive at low bias voltages, turns negative at intermediate biases, and becomes positive again at stronger biases. In addition, we found that at certain biases, a small magnetic field can change the capacitance from divergent negative to divergent positive. Possible physical processes responsible for this anomalous behavior of the capacitance and its relation to the phenomenon of organic magnetoresistance are discussed.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/9/1.4748797.html;jsessionid=2dp4mg5buexs.x-aip-live-06?itemId=/content/aip/journal/apl/101/9/10.1063/1.4748797&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Magnetic-field dependent differential capacitance of polymer diodes
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/9/10.1063/1.4748797
10.1063/1.4748797
SEARCH_EXPAND_ITEM