1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Noise spectroscopy as an equilibrium analysis tool for highly sensitive electrical biosensing
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/9/10.1063/1.4748931
1.
1. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science 293, 1289 (2001).
http://dx.doi.org/10.1126/science.1062711
2.
2. A. Kolmakov, Y. X. Zhang, G. S. Cheng, and M. Moskovits, Adv. Mater. 15, 997 (2003).
http://dx.doi.org/10.1002/adma.200304889
3.
3. G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, Nat. Biotechnol. 23, 1294 (2005).
http://dx.doi.org/10.1038/nbt1138
4.
4. E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, and M. A. Reed, Nature 445, 519 (2007).
http://dx.doi.org/10.1038/nature05498
5.
5. J. Hahm and C. M. Lieber, Nano Lett. 4, 51 (2004).
http://dx.doi.org/10.1021/nl034853b
6.
6. F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, and C. M. Lieber, Proc. Natl. Acad. Sci. U.S.A. 101, 14017 (2004).
http://dx.doi.org/10.1073/pnas.0406159101
7.
7. X. Duan, R. Gao, P. Xie, T. Cohen-Karni, Q. Qing, H. S. Choe, B. Tian, X. Jiang, and C. M. Lieber, Nat. Nanotechnol. 7, 174 (2012).
http://dx.doi.org/10.1038/nnano.2011.223
8.
8. N. Elfstrom, R. Juhasz, I. Sychugov, T. Engfeldt, A. E. Karlstrom, and J. Linnros, Nano Lett. 7, 2608 (2007).
http://dx.doi.org/10.1021/nl0709017
9.
9. N. K. Rajan, D. A. Routenberg, J. Chen, and M. A. Reed, Appl. Phys. Lett. 97, 243501 (2010).
http://dx.doi.org/10.1063/1.3526382
10.
10. J. Zhuge, R. S. Wang, R. Huang, Y. Tian, L. L. Zhang, D. W. Kim, D. Park, and Y. Y. Wang, IEEE Electron Device Lett. 30, 57 (2009).
http://dx.doi.org/10.1109/LED.2008.2007752
11.
11. J. Clarke and R. F. Voss, Phys. Rev. Lett. 33, 24 (1974).
http://dx.doi.org/10.1103/PhysRevLett.33.24
12.
12. G. F. Zheng, X. P. A. Gao, and C. M. Lieber, Nano Lett. 10, 3179 (2010).
http://dx.doi.org/10.1021/nl1020975
13.
13. N. E. Israeloff, Phys. Rev. B 53, 11913 (1996).
http://dx.doi.org/10.1103/PhysRevB.53.R11913
14.
14. C. Q. Wei, Y. Z. Xiong, X. Zhou, N. Singh, S. C. Rustagi, G. Q. Lo, and D. L. Kwong, IEEE Electron Device Lett. 30, 668 (2009).
http://dx.doi.org/10.1109/TED.2009.2030972
15.
15. T. Kong, R. Su, B. Zhang, Q. Zhang, and G. Cheng, Biosens. Bioelectron. 34, 267 (2012).
http://dx.doi.org/10.1016/j.bios.2012.02.019
16.
16. N. K. Rajan, D. A. Routenberg, J. Chen, and M. A. Reed, IEEE Electron Device Lett. 31, 615 (2010).
http://dx.doi.org/10.1109/LED.2010.2047000
17.
17. W. Wang, H. D. Xiong, M. D. Edelstein, D. Gundlach, J. S. Suehle, C. A. Richter, W. Hong, and T. Lee, J. Appl. Phys. 101, 044313 (2007).
http://dx.doi.org/10.1063/1.2496007
18.
18. B. R. Goldsmith, J. G. Coroneus, A. A. Kane, G. A. Weiss, and P. G. Collins, Nano Lett. 8, 189 (2008).
http://dx.doi.org/10.1021/nl0724079
19.
19. N. K. Rajan, D. A. Routenberg, and M. A. Reed, Appl. Phys. Lett. 98, 264107 (2011).
http://dx.doi.org/10.1063/1.3608155
20.
20. E. Simoen and C. Claeys, Solid-State Electron. 43, 865 (1999).
http://dx.doi.org/10.1016/S0038-1101(98)00322-0
21.
21. G. Ghibaudo, O. Roux, C. Nguyenduc, F. Balestra, and J. Brini, Phys. Status Solidi A 124, 571 (1991).
http://dx.doi.org/10.1002/pssa.2211240225
22.
22. R. Jayaraman and C. G. Sodini, IEEE Trans. Electron Devices 36, 1773 (1989).
http://dx.doi.org/10.1109/16.34242
23.
23. F. Liu, K. L. Wang, D. H. Zhang, and C. W. Zhou, Appl. Phys. Lett. 89, 063116 (2006).
http://dx.doi.org/10.1063/1.2335777
24.
24. A. Hassibi, R. Navid, R. W. Dutton, and T. H. Lee, J. Appl. Phys. 96, 1074 (2004).
http://dx.doi.org/10.1063/1.1755429
25.
25. L. K. J. Vandamme, X. S. Li, and D. Rigaud, IEEE Trans. Electron Devices 41, 1936 (1994).
http://dx.doi.org/10.1109/16.333809
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/9/10.1063/1.4748931
Loading
/content/aip/journal/apl/101/9/10.1063/1.4748931
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/9/10.1063/1.4748931
2012-08-28
2014-12-23

Abstract

We demonstrate an approach for highly sensitive bio-detection based on silicon nanowirefield-effect transistors by employing low frequency noise spectroscopy analysis. The inverse of noise amplitude of the device exhibits an enhanced gate coupling effect in strong inversion regime when measured in buffer solution than that in air. The approach was further validated by the detection of cardiac troponin I of 0.23 ng/ml in fetal bovine serum, in which 2 orders of change in noise amplitude was characterized. The selectivity of the proposed approach was also assessed by the addition of 10 μg/ml bovine serum albumin solution.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/9/1.4748931.html;jsessionid=6u8n9n6ssdpic.x-aip-live-06?itemId=/content/aip/journal/apl/101/9/10.1063/1.4748931&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Noise spectroscopy as an equilibrium analysis tool for highly sensitive electrical biosensing
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/9/10.1063/1.4748931
10.1063/1.4748931
SEARCH_EXPAND_ITEM