1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor–acceptor hybrid molecules
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/101/9/10.1063/1.4749285
1.
1. B. W. D’Andrade and S. R. Forrest, Adv. Mater. 16, 1585 (2004).
http://dx.doi.org/10.1002/adma.200400684
2.
2. M. A. Baldo, D. F. O’Brien, Y. You, A. A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature (London) 395, 151 (1998).
http://dx.doi.org/10.1038/25954
3.
3. C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys. 90, 5048 (2001).
http://dx.doi.org/10.1063/1.1409582
4.
4. L. Xiao, S.-J. Su, Y. Agata, H. Lan, and J. Kido, Adv. Mater. 21, 1271 (2009).
http://dx.doi.org/10.1002/adma.200802034
5.
5. S. Reineke, K. Walzer, and K. Leo, Phys. Rev. B 75, 125328 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.125328
6.
6. J. B. Birks, Photophysics of Organic Molecules (Wiley, New York, 1970), p. 372.
7.
7. D. Y. Kondakov, T. D. Pawlik, T. K. Hatwar, and J. P. Spindler, J. Appl. Phys. 106, 124510 (2009).
http://dx.doi.org/10.1063/1.3273407
8.
8. K. Okumoto, H. Kanno, Y. Hamada, H. Takahashi, and K. Shibata, Appl. Phys. Lett. 89, 063504 (2006).
http://dx.doi.org/10.1063/1.2266452
9.
9. A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, and C. Adachi, Adv. Mater. 21, 4802 (2009).
http://dx.doi.org/10.1002/adma.200900983
10.
10. A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, and C. Adachi, Appl. Phys. Lett. 98, 083302 (2011).
http://dx.doi.org/10.1063/1.3558906
11.
11. T. Nakagawa, S.-Y. Ku, K.-T. Wong, and C. Adachi, “Electroluminescence based on thermally activated delayed fluorescence generated by a spirobifluorene donor-acceptor structure,” Chem. Commun. (2012).
http://dx.doi.org/10.1039/c2cc31468a
12.
12. K. Goushi, K. Yoshida, K. Sato, and C. Adachi, Nat. Photonics 6, 253 (2012).
http://dx.doi.org/10.1038/nphoton.2012.31
13.
13.See supplementary material at http://dx.doi.org/10.1063/1.4749285 for synthesis and characterization details. [Supplementary Material]
14.
14. K. Deuchert and S. Hünig, Angew. Chem., Int. Ed. Engl. 17, 875 (1978).
http://dx.doi.org/10.1002/anie.197808753
15.
15. C. Han, Y. Zhao, H. Xu, J. Chen, Z. Deng, D. Ma, Q. Li, and P. Yan, Chem. Eur. J. 17, 5800 (2011).
http://dx.doi.org/10.1002/chem.201100254
16.
16. R. J. Holmes, S. R. Forrest, Y.-J. Tung, R. C. Kwong, J. J. Brown, S. Garon, and M. E. Thompson, Appl. Phys. Lett. 82, 2422 (2003).
http://dx.doi.org/10.1063/1.1568146
17.
17. K. S. Son, M. Yahiro, T. Imai, H. Yoshizaki, and C. Adachi, Chem. Mater. 20, 4439 (2008).
http://dx.doi.org/10.1021/cm8004985
18.
18. X. Ren, J. Li, R. J. Holmes, P. I. Djurovich, S. R. Forrest, and M. E. Thompson, Chem. Mater. 16, 4743 (2004).
http://dx.doi.org/10.1021/cm049402m
19.
19. X. Zhou, D. S. Qin, M. Pfeiffer, J. Blochwitz-Nimoth, A. Werner, J. Drechsel, B. Maennig, K. Leo, M. Bold, P. Erk, and H. Hartmann, Appl. Phys. Lett. 81, 4070 (2002).
http://dx.doi.org/10.1063/1.1522495
20.
20.For a single-emission layer device: ITO/α-NPD (40 nm)/mCP (10 nm)/6 wt. % CC2TA:DPEPO (20 nm)/DPEPO (10 nm)/TPBi (30 nm)/LiF (0.8 nm)/Al (80 nm), the driving voltage of 11.9 V at 10 mA/cm2 and the maximum ηext of 10% were obtained (see Ref. 13).
21.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/9/10.1063/1.4749285
Loading
/content/aip/journal/apl/101/9/10.1063/1.4749285
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/101/9/10.1063/1.4749285
2012-08-30
2014-07-22

Abstract

We have designed and synthesized a high-efficiency purely organic luminescent material, 2,4-bis{3-(9 -carbazol-9-yl)-9 -carbazol-9-yl}-6-phenyl-1,3,5-triazine (CC2TA) comprising the bicarbazole donor and phenyltriazine acceptor units, which is capable of emitting thermally activated delayed fluorescence. The molecular design of CC2TA allows spatial separation of HOMO and LUMO on the donor and acceptor fragments, respectively, leading to an exceptionally small singlet–triplet exchange energy  = 0.06 eV) together with a high triplet energy. Furthermore, a high external electroluminescence quantum efficiency as high as 11% ± 1% has been achieved in the sky-blue organic light-emitting diodes employing CC2TA as an emitter.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/101/9/1.4749285.html;jsessionid=u9m26ksn7orc.x-aip-live-02?itemId=/content/aip/journal/apl/101/9/10.1063/1.4749285&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High-efficiency organic light-emitting diodes utilizing thermally activated delayed fluorescence from triazine-based donor–acceptor hybrid molecules
http://aip.metastore.ingenta.com/content/aip/journal/apl/101/9/10.1063/1.4749285
10.1063/1.4749285
SEARCH_EXPAND_ITEM