1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Doping incorporation paths in catalyst-free Be-doped GaAs nanowires
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/1/10.1063/1.4772020
1.
1. C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L. Feiner, A. Forchel, M. Scheffler, W. Riess, B. Ohlsson, U. Gösele, and L. Samuelson, Mater. Today 9, 28 (2006).
http://dx.doi.org/10.1016/S1369-7021(06)71651-0
2.
2. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science 293, 1289 (2001).
http://dx.doi.org/10.1126/science.1062711
3.
3. Y. Cui and C. M. Lieber, Science 291, 851 (2001).
http://dx.doi.org/10.1126/science.291.5505.851
4.
4. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nature Mater 9, 239 (2010).
http://dx.doi.org/10.1038/nmat2727
5.
5. G. Cirlin, A. Bouravleuv, I. Soshnikov, Y. Samsonenko, V. Dubrovskii, E. Arakcheeva, E. Tanklevskaya, and P. Werner, Nanoscale Res. Lett. 5, 360 (2009).
http://dx.doi.org/10.1007/s11671-009-9488-2
6.
6. R. S. Wagner, W. C. Ellis, K. A. Jackson, and S. M. Arnold, J. Appl. Phys. 35, 2993 (1964).
http://dx.doi.org/10.1063/1.1713143
7.
7. M. J. Tambe, S. Ren, and S. Gradecak, Nano Lett. 10, 4584 (2010).
http://dx.doi.org/10.1021/nl102594e
8.
8. A. M. Katzenmeyer, F. Léonard, A. A. Talin, P.-S. Wong, and D. L. Huffaker, Nano Lett. 10, 4935 (2010).
http://dx.doi.org/10.1021/nl102958g
9.
9. J. Wallentin and M. T. Borgström, J. Mater. Res. 26, 21422156 (2011), doi: 10.1557/jmr.2011.214.
http://dx.doi.org/10.1557/jmr.2011.214
10.
10. J. E. Allen, D. E. Perea, E. R. Hemesath, and L. J. Lauhon, Adv. Mater. 21, 3067 (2009).
http://dx.doi.org/10.1002/adma.200803865
11.
11. D. E. Perea, E. R. Hemesath, E. J. Schwalbach, J. L. Lensch-Falk, P. W. Voorhees, and L. J. Lauhon, Nat. Nanotechnol. 4, 315 (2009).
http://dx.doi.org/10.1038/nnano.2009.51
12.
12. S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F. J. Tegude, and G. Bacher, Nanotechnology 20, 385702 (2009).
http://dx.doi.org/10.1088/0957-4484/20/38/385702
13.
13. M. Hilse, M. Ramsteiner, S. Breuer, L. Geelhaar, and H. Riechert, Appl. Phys. Lett. 96, 193104 (2010).
http://dx.doi.org/10.1063/1.3428358
14.
14. S.-G. Ihn, M.-Y. Ryu, and J.-I. Song, Solid State Commun. 150, 729 (2010).
http://dx.doi.org/10.1016/j.ssc.2010.01.037
15.
15. S. Yu, T. Y. Tan, and U. Gosele, J. Appl. Phys. 69, 3547 (1991).
http://dx.doi.org/10.1063/1.348497
16.
16. O. Salehzadeh, M. X. Chen, K. L. Kavanagh, and S. P. Watkins, Appl. Phys. Lett. 99, 182102 (2011).
http://dx.doi.org/10.1063/1.3658633
17.
17. J. A. Czaban, D. A. Thompson, and R. R. LaPierre, Nano Lett. 9, 148 (2009).
http://dx.doi.org/10.1021/nl802700u
18.
18. C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A. Fontcuberta i Morral, Phys. Rev. B 77, 155326 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.155326
19.
19. E. Uccelli, J. Arbiol, C. Magen, P. Krogstrup, E. Russo-Averchi, M. Heiss, G. Mugny, F. Morier-Genoud, J. Nygård, J. R. Morante, and A. Fontcuberta i Morral, Nano Lett. 11, 3827 (2011).
http://dx.doi.org/10.1021/nl201902w
20.
20. P. Krogstrup, R. Popovitz-Biro, E. Johnson, M. H. Madsen, J. Nygård, and H. Shtrikman, Nano Lett. 10, 4475 (2010).
http://dx.doi.org/10.1021/nl102308k
21.
21. E. Russo-Averchi, M. Heiss, L. Michelet, P. Krogstrup, J. Nygård, C. Magen, J. Ramon Morante, E. Uccelli, J. Arbiol, and A. Fontcuberta i Morral, Nanoscale 4, 1486 (2012).
http://dx.doi.org/10.1039/c2nr11799a
22.
22. C. Colombo, P. Krogstrup, J. Nygård, M. L. Brongersma, and A. Fontcuberta i Morral, New J. Phys. 13, 123026 (2011).
http://dx.doi.org/10.1088/1367-2630/13/12/123026
23.
23. J. Dufouleur, C. Colombo, T. Garma, B. Ketterer, E. Uccelli, M. Nicotra, and A. Fontcuberta i Morral, Nano Lett. 10, 1734 (2010).
http://dx.doi.org/10.1021/nl100157w
24.
24. C. Gutsche, A. Lysov, I. Regolin, K. Blekker, W. Prost, and F.-J. Tegude, Nanoscale Res. Lett. 6, 1 (2010).
http://dx.doi.org/10.1007/s11671-010-9815-7
25.
25. K. V. A. Walsh, Beryllium Chemistry and Processing (ASM International, 2009).
26.
26.The structure of the nanowires is zinc blende with some twinning, similarly as what we have observed in the case of Si-doped nanowires in similar conditions.
27.
27. B. Ketterer, E. Uccelli, and A. Fontcuberta i Morral, Nanoscale 4, 1789 (2012).
http://dx.doi.org/10.1039/c2nr11910b
28.
28. M. T. Bjork, H. Schmid, J. Knoch, H. Riel, and W. Riess, Nat. Nanotechnol. 4, 103 (2009).
http://dx.doi.org/10.1038/nnano.2008.400
29.
29. G. Landgren, R. Ludeke, Y. Jugnet, J. F. Morar, and F. J. Himpsel, J. Vac. Sci. Technol. B 2, 351 (1984).
http://dx.doi.org/10.1116/1.582823
30.
30. M. Heiss, C. Colombo, and A. Fontcuberta i Morral, Proc. SPIE 8106, 810603 (2011).
http://dx.doi.org/10.1117/12.896471
31.
31. M. Ilegems, J. Appl. Phys. 48, 1278 (1977).
http://dx.doi.org/10.1063/1.323772
32.
32. M. Kazuya, K. Makoto, and T. Kiyoshi, J. Appl. Phys. 54, 1574 (1983).
http://dx.doi.org/10.1063/1.332139
33.
33. E. Koren, J. K. Hyun, U. Givan, E. R. Hemesath, L. J. Lauhon, and Y. Rosenwaks, Nano Lett. 11, 183 (2011).
http://dx.doi.org/10.1021/nl103363c
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/1/10.1063/1.4772020
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Processes that influence the Be incorporation in GaAs nanowires: VLS mechanism, possibility of growing a doped shell (VS) and diffusion of dopants during the growth process.

Image of FIG. 2.

Click to view

FIG. 2.

(a) I-V examples of each growth performed with single 2 contact configuration. The linearity of the curve shows that Pd/Ti/Au electrical contacts are ohmic on Be doped GaAs nanowires. In the inset, a SEM image of a contacted nanowire. (b) Nanowires conductivity obtained from 4 point measurements and a corresponding SEM image.

Image of FIG. 3.

Click to view

FIG. 3.

Calculated depletion region width in dependence of nanowire concentration for radii and .

Image of FIG. 4.

Click to view

FIG. 4.

(a) Section view of a nanowire. The doping and the carrier concentration are reported as a function of position along the nanowire diameter. (b) Comparison between carrier density concentration (red) and calculated doping concentration in the shell (black). The blue dotted line represents . The error bar reported for every dot represents only the standard deviation calculated on the electrical measurements.

Tables

Generic image for table

Click to view

Table I.

Time of axial nanowires growth, nominal shell thickness, nominal doping concentration (corresponding to the planar growth under the same conditions), and measured conductivity obtained by 4-point contact configuration.

Generic image for table

Click to view

Table II.

Carrier concentration, shell doping concentration calculated with the model described previously, total expected shell, depletion region (w), and diffusion length defined by the distance which the concentration is 1/e of the shell concentration.

Loading

Article metrics loading...

/content/aip/journal/apl/102/1/10.1063/1.4772020
2013-01-10
2014-04-18

Abstract

The incorporation paths of Be in GaAs nanowires grown by the Ga-assisted method in molecular beam epitaxy have been investigated by electrical measurements of nanowires with different doping profiles. We find that Be atoms incorporate preferentially via the nanowire side facets, while the incorporation path through the Ga droplet is negligible. We also show that Be can diffuse into the volume of the nanowire giving an alternative incorporation path. This work is an important step towards controlled doping of nanowires and will serve as a help for designing future devices based on nanowires.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/1/1.4772020.html;jsessionid=56818l0a73laf.x-aip-live-01?itemId=/content/aip/journal/apl/102/1/10.1063/1.4772020&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Doping incorporation paths in catalyst-free Be-doped GaAs nanowires
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/1/10.1063/1.4772020
10.1063/1.4772020
SEARCH_EXPAND_ITEM