1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Doping incorporation paths in catalyst-free Be-doped GaAs nanowires
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/1/10.1063/1.4772020
1.
1. C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L. Feiner, A. Forchel, M. Scheffler, W. Riess, B. Ohlsson, U. Gösele, and L. Samuelson, Mater. Today 9, 28 (2006).
http://dx.doi.org/10.1016/S1369-7021(06)71651-0
2.
2. Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Science 293, 1289 (2001).
http://dx.doi.org/10.1126/science.1062711
3.
3. Y. Cui and C. M. Lieber, Science 291, 851 (2001).
http://dx.doi.org/10.1126/science.291.5505.851
4.
4. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, Nature Mater 9, 239 (2010).
http://dx.doi.org/10.1038/nmat2727
5.
5. G. Cirlin, A. Bouravleuv, I. Soshnikov, Y. Samsonenko, V. Dubrovskii, E. Arakcheeva, E. Tanklevskaya, and P. Werner, Nanoscale Res. Lett. 5, 360 (2009).
http://dx.doi.org/10.1007/s11671-009-9488-2
6.
6. R. S. Wagner, W. C. Ellis, K. A. Jackson, and S. M. Arnold, J. Appl. Phys. 35, 2993 (1964).
http://dx.doi.org/10.1063/1.1713143
7.
7. M. J. Tambe, S. Ren, and S. Gradecak, Nano Lett. 10, 4584 (2010).
http://dx.doi.org/10.1021/nl102594e
8.
8. A. M. Katzenmeyer, F. Léonard, A. A. Talin, P.-S. Wong, and D. L. Huffaker, Nano Lett. 10, 4935 (2010).
http://dx.doi.org/10.1021/nl102958g
9.
9. J. Wallentin and M. T. Borgström, J. Mater. Res. 26, 21422156 (2011), doi: 10.1557/jmr.2011.214.
http://dx.doi.org/10.1557/jmr.2011.214
10.
10. J. E. Allen, D. E. Perea, E. R. Hemesath, and L. J. Lauhon, Adv. Mater. 21, 3067 (2009).
http://dx.doi.org/10.1002/adma.200803865
11.
11. D. E. Perea, E. R. Hemesath, E. J. Schwalbach, J. L. Lensch-Falk, P. W. Voorhees, and L. J. Lauhon, Nat. Nanotechnol. 4, 315 (2009).
http://dx.doi.org/10.1038/nnano.2009.51
12.
12. S. Vinaji, A. Lochthofen, W. Mertin, I. Regolin, C. Gutsche, W. Prost, F. J. Tegude, and G. Bacher, Nanotechnology 20, 385702 (2009).
http://dx.doi.org/10.1088/0957-4484/20/38/385702
13.
13. M. Hilse, M. Ramsteiner, S. Breuer, L. Geelhaar, and H. Riechert, Appl. Phys. Lett. 96, 193104 (2010).
http://dx.doi.org/10.1063/1.3428358
14.
14. S.-G. Ihn, M.-Y. Ryu, and J.-I. Song, Solid State Commun. 150, 729 (2010).
http://dx.doi.org/10.1016/j.ssc.2010.01.037
15.
15. S. Yu, T. Y. Tan, and U. Gosele, J. Appl. Phys. 69, 3547 (1991).
http://dx.doi.org/10.1063/1.348497
16.
16. O. Salehzadeh, M. X. Chen, K. L. Kavanagh, and S. P. Watkins, Appl. Phys. Lett. 99, 182102 (2011).
http://dx.doi.org/10.1063/1.3658633
17.
17. J. A. Czaban, D. A. Thompson, and R. R. LaPierre, Nano Lett. 9, 148 (2009).
http://dx.doi.org/10.1021/nl802700u
18.
18. C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A. Fontcuberta i Morral, Phys. Rev. B 77, 155326 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.155326
19.
19. E. Uccelli, J. Arbiol, C. Magen, P. Krogstrup, E. Russo-Averchi, M. Heiss, G. Mugny, F. Morier-Genoud, J. Nygård, J. R. Morante, and A. Fontcuberta i Morral, Nano Lett. 11, 3827 (2011).
http://dx.doi.org/10.1021/nl201902w
20.
20. P. Krogstrup, R. Popovitz-Biro, E. Johnson, M. H. Madsen, J. Nygård, and H. Shtrikman, Nano Lett. 10, 4475 (2010).
http://dx.doi.org/10.1021/nl102308k
21.
21. E. Russo-Averchi, M. Heiss, L. Michelet, P. Krogstrup, J. Nygård, C. Magen, J. Ramon Morante, E. Uccelli, J. Arbiol, and A. Fontcuberta i Morral, Nanoscale 4, 1486 (2012).
http://dx.doi.org/10.1039/c2nr11799a
22.
22. C. Colombo, P. Krogstrup, J. Nygård, M. L. Brongersma, and A. Fontcuberta i Morral, New J. Phys. 13, 123026 (2011).
http://dx.doi.org/10.1088/1367-2630/13/12/123026
23.
23. J. Dufouleur, C. Colombo, T. Garma, B. Ketterer, E. Uccelli, M. Nicotra, and A. Fontcuberta i Morral, Nano Lett. 10, 1734 (2010).
http://dx.doi.org/10.1021/nl100157w
24.
24. C. Gutsche, A. Lysov, I. Regolin, K. Blekker, W. Prost, and F.-J. Tegude, Nanoscale Res. Lett. 6, 1 (2010).
http://dx.doi.org/10.1007/s11671-010-9815-7
25.
25. K. V. A. Walsh, Beryllium Chemistry and Processing (ASM International, 2009).
26.
26.The structure of the nanowires is zinc blende with some twinning, similarly as what we have observed in the case of Si-doped nanowires in similar conditions.
27.
27. B. Ketterer, E. Uccelli, and A. Fontcuberta i Morral, Nanoscale 4, 1789 (2012).
http://dx.doi.org/10.1039/c2nr11910b
28.
28. M. T. Bjork, H. Schmid, J. Knoch, H. Riel, and W. Riess, Nat. Nanotechnol. 4, 103 (2009).
http://dx.doi.org/10.1038/nnano.2008.400
29.
29. G. Landgren, R. Ludeke, Y. Jugnet, J. F. Morar, and F. J. Himpsel, J. Vac. Sci. Technol. B 2, 351 (1984).
http://dx.doi.org/10.1116/1.582823
30.
30. M. Heiss, C. Colombo, and A. Fontcuberta i Morral, Proc. SPIE 8106, 810603 (2011).
http://dx.doi.org/10.1117/12.896471
31.
31. M. Ilegems, J. Appl. Phys. 48, 1278 (1977).
http://dx.doi.org/10.1063/1.323772
32.
32. M. Kazuya, K. Makoto, and T. Kiyoshi, J. Appl. Phys. 54, 1574 (1983).
http://dx.doi.org/10.1063/1.332139
33.
33. E. Koren, J. K. Hyun, U. Givan, E. R. Hemesath, L. J. Lauhon, and Y. Rosenwaks, Nano Lett. 11, 183 (2011).
http://dx.doi.org/10.1021/nl103363c
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/1/10.1063/1.4772020
Loading
/content/aip/journal/apl/102/1/10.1063/1.4772020
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/1/10.1063/1.4772020
2013-01-10
2014-09-22

Abstract

The incorporation paths of Be in GaAs nanowires grown by the Ga-assisted method in molecular beam epitaxy have been investigated by electrical measurements of nanowires with different doping profiles. We find that Be atoms incorporate preferentially via the nanowire side facets, while the incorporation path through the Ga droplet is negligible. We also show that Be can diffuse into the volume of the nanowire giving an alternative incorporation path. This work is an important step towards controlled doping of nanowires and will serve as a help for designing future devices based on nanowires.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/1/1.4772020.html;jsessionid=6tgi7k7isa8sa.x-aip-live-06?itemId=/content/aip/journal/apl/102/1/10.1063/1.4772020&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Doping incorporation paths in catalyst-free Be-doped GaAs nanowires
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/1/10.1063/1.4772020
10.1063/1.4772020
SEARCH_EXPAND_ITEM