1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
2 μm solid-state laser mode-locked by single-layer graphene
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/1/10.1063/1.4773990
1.
1. V. W. S. Chan, IEEE J. Sel. Top. Quantum Electron. 6, 959 (2000).
http://dx.doi.org/10.1109/2944.902144
2.
2. B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, J. Biomed. Opt. 3, 76 (1998).
http://dx.doi.org/10.1117/1.429898
3.
3. F. Dausinger, F. Lichtner, and H. Lubatschowski, Femtosecond Technology for Technical and Medical Applications (Springer, 2004).
4.
4. R. R. Gattass and E. Mazur, Nat. Photonics 2, 219 (2008).
http://dx.doi.org/10.1038/nphoton.2008.47
5.
5. M. Ebrahim-Zadeh and I. T. Sorokina, Mid-infrared Coherent Sources and Applications (Springer, 2008).
6.
6. U. Keller, Nature 424, 831 (2003).
http://dx.doi.org/10.1038/nature01938
7.
7. W. Sibbett, A. A. Lagatsky, and C. T. A. Brown, Opt. Express 20, 6989 (2012).
http://dx.doi.org/10.1364/OE.20.006989
8.
8. A. A. Lagatsky, X. Han, M. D. Serrano, C. Cascales, C. Zaldo, S. Calvez, M. D. Dawson, J. A. Gupta, C. T. A. Brown, and W. Sibbett, Opt. Lett. 35, 3027 (2010).
http://dx.doi.org/10.1364/OL.35.003027
9.
9. A. A. Lagatsky, P. Koopmann, P. Fuhrberg, G. Huber, C. T. A. Brown, and W. Sibbett, Opt. Lett. 37, 437 (2012).
http://dx.doi.org/10.1364/OL.37.000437
10.
10. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, Adv. Mater. 21, 3874 (2009).
http://dx.doi.org/10.1002/adma.200901122
11.
11. Z. Sun, T. Hasan, and A. C. Ferrari, Physica E 44, 1082 (2012).
http://dx.doi.org/10.1016/j.physe.2012.01.012
12.
12. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nat. Photonics 4, 611 (2010).
http://dx.doi.org/10.1038/nphoton.2010.186
13.
13. D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, Appl. Phys. Lett. 101, 153107 (2012).
http://dx.doi.org/10.1063/1.4757293
14.
14. Z. Sun, T. Hasan, F. Torrisi, D. Popa, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, ACS Nano 4, 803 (2010).
http://dx.doi.org/10.1021/nn901703e
15.
15. F. Torrisi, T. Hasan, W. Wu, S. Jung, F. Bonaccorso, P. J. Paul, D. P. Chu, and A. C. Ferrari, ACS Nano 6, 2992 (2012).
http://dx.doi.org/10.1021/nn2044609
16.
16. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, Nat. Nanotechnol. 3, 738 (2008).
http://dx.doi.org/10.1038/nnano.2008.312
17.
17. I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D. I. Yeom, and F. Rotermund, Appl. Phys. Express 5, 032701 (2012).
http://dx.doi.org/10.1143/APEX.5.032701
18.
18. W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, Appl. Phys. Lett. 96, 031106 (2010).
http://dx.doi.org/10.1063/1.3292018
19.
19. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, U. Griebner, V. Petrov, and F. Rotermund, Opt. Lett. 33, 2449 (2008).
http://dx.doi.org/10.1364/OL.33.002449
20.
20. Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, V. Nicolosi, and A. Ferrari, Nano Res. 3, 653 (2010).
http://dx.doi.org/10.1007/s12274-010-0026-4
21.
21. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, Adv. Funct. Mater. 19, 3077 (2009).
http://dx.doi.org/10.1002/adfm.200901007
22.
22. T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, and A. C. Ferrari, Phys. Status Solidi B 247, 2953 (2010).
http://dx.doi.org/10.1002/pssb.201000339
23.
23. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, Appl. Phys. Lett. 97, 203106 (2010).
http://dx.doi.org/10.1063/1.3517251
24.
24. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gunko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, Nat. Nanotechnol. 3, 563 (2008).
http://dx.doi.org/10.1038/nnano.2008.215
25.
25. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, Opt. Express 20, 25077 (2012).
http://dx.doi.org/10.1364/OE.20.025077
26.
26. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, Appl. Phys. B 65, 277 (1997).
http://dx.doi.org/10.1007/s003400050273
27.
27. J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, Laser Phys. Lett. 9, 15 (2012).
http://dx.doi.org/10.1002/lapl.201110087
28.
28. J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, Opt. Lett. 37, 2085 (2012).
http://dx.doi.org/10.1364/OL.37.002085
29.
29. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature 442, 282 (2006).
http://dx.doi.org/10.1038/nature04969
30.
30. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K. A. Mkhoyan, O. Celik, D. Mostrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, Adv. Funct. Mater. 19, 2577 (2009).
http://dx.doi.org/10.1002/adfm.200900166
31.
31. S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010).
http://dx.doi.org/10.1038/nnano.2010.132
32.
32. F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, Materials Today 15, 14 (2012).
33.
33. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.187401
34.
34. L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, Nano Lett. 11, 3190 (2011).
http://dx.doi.org/10.1021/nl201432g
35.
35. A. Mooradian, Phys. Rev. Lett. 22, 185 (1969).
http://dx.doi.org/10.1103/PhysRevLett.22.185
36.
36. A. C. Ferrari and J. Robertson, Phys. Rev. B 61, 14095 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.14095
37.
37. A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. W. Magnuson, S. McDonnell, L. Colombo, E. M. Vogel, R. S. Ruoff, and R. M. Wallace, Appl. Phys. Lett. 99, 122108 (2011).
http://dx.doi.org/10.1063/1.3643444
38.
38. A. Ferrari, Solid State Commun. 143, 47 (2007).
http://dx.doi.org/10.1016/j.ssc.2007.03.052
39.
39. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, and A. K. Sood, Nat. Nanotechnol. 3, 210 (2008).
http://dx.doi.org/10.1038/nnano.2008.67
40.
40. C. Casiraghi, S. Pisana, K. S. Novoselov, A. K. Geim, and A. C. Ferrari, Appl. Phys. Lett. 91, 233108 (2007).
http://dx.doi.org/10.1063/1.2818692
41.
41. S. Pisana, M. Lazzeri, C. Casiraghi, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and F. Mauri, Nature Mater. 6, 198 (2007).
http://dx.doi.org/10.1038/nmat1846
42.
42. Y. Y. Wang, Z. H. Ni, T. Yu, Z. X. Shen, Y. H. Wu, W. Chen, and A. T. Shen Wee, J. Phys. Chem. C 112, 10637 (2008).
http://dx.doi.org/10.1021/jp8008404
43.
43. L. Kong, J. Phys. Chem. C 114, 21618 (2010).
http://dx.doi.org/10.1021/jp108616h
44.
44. V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, Phys. Rev. B 81, 155413 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.155413
45.
45. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, London, 2001).
46.
46. R. R. Nair, P. Blake, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008).
http://dx.doi.org/10.1126/science.1156965
47.
47. K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, Phys. Rev. Lett. 101, 196405 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.196405
48.
48. P. Koopmann, R. Peters, K. Petermann, and G. Huber, Appl. Phys. B 102, 19 (2011).
http://dx.doi.org/10.1007/s00340-010-4361-7
49.
49. O. L. Antipov, S. Y. Golovkin, O. N. Gorshkov, N. G. Zakharov, M. V. Kruglova, M. O. Marychev, A. A. Novikov, N. V. Sakharov, and E. V. Chuprunov, Quantum Electron. 41, 863 (2011).
http://dx.doi.org/10.1070/QE2011v041n10ABEH014653
50.
50. A. A. Lagatsky, O. L. Antipov, and W. Sibbett, Opt. Express 20, 19349 (2012).
http://dx.doi.org/10.1364/OE.20.019349
51.
51. W. Koechner, Solid-State Laser Engineering (Springer, 2006).
52.
52. A. Schmidt, P. Koopmann, G. Huber, P. Fuhrberg, S. Y. Choi, F. Rotermund, V. Petrov, and U. Griebner, Opt. Express 20, 5313 (2012).
http://dx.doi.org/10.1364/OE.20.005313
53.
53. K. Kieu and F. W. Wise, IEEE Photon Technol. Lett. 21, 128 (2009).
http://dx.doi.org/10.1109/LPT.2008.2008727
54.
54. S. Kivisto, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, and O. G. Okhotnikov, Opt. Express 17, 2358 (2009).
http://dx.doi.org/10.1364/OE.17.002358
55.
55. M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, V. I. Konov, and E. M. Dianov, Opt. Lett. 33, 1336 (2008).
http://dx.doi.org/10.1364/OL.33.001336
56.
56. M. L. Dennis and I. N. Duling, IEEE J. Quantum Electron 30, 1469 (1994).
http://dx.doi.org/10.1109/3.299472
57.
57. C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, J. Opt. Soc. Am. B 16, 46 (1999).
http://dx.doi.org/10.1364/JOSAB.16.000046
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/1/10.1063/1.4773990
Loading
/content/aip/journal/apl/102/1/10.1063/1.4773990
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/1/10.1063/1.4773990
2013-01-10
2014-08-20

Abstract

We report a 2 μm ultrafast solid-state laser, mode-locked by single-layer graphene, generating transform-limited pulses, with a spectral width at 2067 nm. The maximum average output power is 270 mW, at a pulse repetition frequency of 110 MHz. This is a convenient high-power transform-limited ultrafast laser at 2 μm for various applications, such as laser surgery and material processing.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/1/1.4773990.html;jsessionid=9ej6742sp6gr2.x-aip-live-02?itemId=/content/aip/journal/apl/102/1/10.1063/1.4773990&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: 2 μm solid-state laser mode-locked by single-layer graphene
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/1/10.1063/1.4773990
10.1063/1.4773990
SEARCH_EXPAND_ITEM