1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Electronic transport in sub-micron square area organic field-effect transistors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/10/10.1063/1.4795014
1.
1. T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, and T. Someya, Science 326, 15161519 (2009).
http://dx.doi.org/10.1126/science.1179963
2.
2. A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, Nature 444, 913917 (2006).
http://dx.doi.org/10.1038/nature05427
3.
3. A. Dodabalapur, Mater. Today 9, 2430 (2006).
http://dx.doi.org/10.1016/S1369-7021(06)71444-4
4.
4. J. H. Cho, J. Lee, Y. Xia, B.-S. Kim, Y. He, M. J. Renn, T. P. Lodge, and C. D. Frisbie, Nature Mater. 7, 900906 (2008).
http://dx.doi.org/10.1038/nmat2291
5.
5. E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. van Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, and T. M. Klapwijk, Nature Mater. 2, 678682 (2003).
http://dx.doi.org/10.1038/nmat978
6.
6. G. Horowitz, J. Mater. Res. 19, 19461962 (2004).
http://dx.doi.org/10.1557/JMR.2004.0266
7.
7. S. Kola, J. Sinha, and H. E. Katz, J. Polym. Sci., Part B: Polym. Phys. 50, 10901120 (2012).
http://dx.doi.org/10.1002/polb.23054
8.
8. C. Wang, H. Dong, W. Hu, Y. Liu, and D. Zhu, Chem. Rev. 112, 22082267 (2012).
http://dx.doi.org/10.1021/cr100380z
9.
9. M. Kitamura and Y. Arakawa, J. Phys.: Condens. Matter 20, 184011 (2008).
http://dx.doi.org/10.1088/0953-8984/20/18/184011
10.
10. A. Hoppe, D. Knipp, B. Gburek, A. Benor, M. Marinkovic, and V. Wagner, Org. Electron. 11, 626631 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.01.002
11.
11. H. Klauk, U. Zschieschang, and M. Halik, J. Appl. Phys. 102, 074514 (2007).
http://dx.doi.org/10.1063/1.2794702
12.
12. E. Cantatore, T. C. T. Geuns, G. H. Gelinck, E. van Veenendaal, A. F. A. Gruijthuijsen, L. Schrijnemakers, S. Drews, and D. M. de Leeuw, IEEE J. Solid-State Circuits 42, 8492 (2007).
http://dx.doi.org/10.1109/JSSC.2006.886556
13.
13. E. C. P. Smits, S. G. J. Mathijssen, P. A. van Hal, S. Setayesh, T. C. T. Geuns, K. A. H. A. Mutsaers, E. Cantatore, H. J. Wondergem, O. Werzer, R. Resel, M. Kemerink, S. Kirchmeyer, A. M. Muzafarov, S. A. Ponomarenko, B. de Boer, P. W. M. Blom, and D. M. de Leeuw, Nature 455, 956959 (2008).
http://dx.doi.org/10.1038/nature07320
14.
14. S. Verlaak and P. Heremans, Phys. Rev. B 75, 115127 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.115127
15.
15. G. S. Tulevski, C. Nuckolls, A. Afzali, T. O. Graham, and C. R. Kagan, Appl. Phys. Lett. 89, 183101 (2006).
http://dx.doi.org/10.1063/1.2364154
16.
16. M. Tello, M. Chiesa, C. M. Duffy, and H. Sirringhaus, Adv. Funct. Mater. 18, 39073913 (2008).
http://dx.doi.org/10.1002/adfm.200800009
17.
17. P. Stoliar, R. Kshirsagar, M. Massi, P. Annibale, C. Albonetti, D. M. de Leeuw, and F. Biscarini, J. Am. Chem. Soc. 129, 64776484 (2007).
http://dx.doi.org/10.1021/ja069235m
18.
18. L. Burgi, T. J. Richards, R. H. Friend, and H. Sirringhaus, J. Appl. Phys. 94, 61296137 (2003).
http://dx.doi.org/10.1063/1.1613369
19.
19. R. Joseph Kline, M. D. McGehee, and M. F. Toney, Nature Mater. 5, 222228 (2006).
http://dx.doi.org/10.1038/nmat1590
20.
20. L. Wang, D. Fine, D. Basu, and A. Dodabalapur, J. Appl. Phys. 101, 054515 (2007).
http://dx.doi.org/10.1063/1.2496316
21.
21. F. Golmar, M. Gobbi, R. Llopis, P. Stoliar, F. Casanova, and L. E. Hueso, Org. Electron. 13, 23012306 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.07.031
22.
22. L. Wang, D. Fine, T. Jung, D. Basu, H. von Seggern, and A. Dodabalapur, Appl. Phys. Lett. 85, 17721774 (2004).
http://dx.doi.org/10.1063/1.1790033
23.
23. B. A. Mattis, Y. Pei, and V. Subramanian, Appl. Phys. Lett. 86, 033113 (2005).
http://dx.doi.org/10.1063/1.1854217
24.
24. H. Yanagisawa, T. Tamaki, M. Nakamura, and K. Kudo, Thin Solid Films 464–465, 398402 (2004).
http://dx.doi.org/10.1016/j.tsf.2004.06.065
25.
25. Y. Cao, M. L. Steigerwald, C. Nuckolls, and X. Guo, Adv. Mater. 22, 2032 (2010).
http://dx.doi.org/10.1002/adma.200900504
26.
26. C. D. Dimitrakopoulos and D. J. Mascaro, IBM J. Res. Dev. 45, 1127 (2001).
http://dx.doi.org/10.1147/rd.451.0011
27.
27. A. Salleo and R. A. Street, J. Appl. Phys. 94, 471479 (2003).
http://dx.doi.org/10.1063/1.1581352
28.
28. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006).
29.
29. J. N. Haddock, X. Zhang, S. Zheng, Q. Zhang, S. R. Marder, and B. Kippelen, Org. Electron. 7, 4554 (2006).
http://dx.doi.org/10.1016/j.orgel.2005.11.002
30.
30. J. B. Lee, P. C. Chang, J. A. Liddle, and V. Subramanian, IEEE Trans. Electron Devices 52, 18741879 (2005).
http://dx.doi.org/10.1109/TED.2005.851845
31.
31. A. R. Brown, C. P. Jarrett, D. M. de Leeuw, and M. Matters, Synth. Met. 88, 3755 (1997).
http://dx.doi.org/10.1016/S0379-6779(97)80881-8
32.
32. M. Shur, M. Hack, and J. G. Shaw, J. Appl. Phys. 66, 33713380 (1989).
http://dx.doi.org/10.1063/1.344481
33.
33.Note that the effect of the Frenkel-Poole dependence is relatively small (Fig. 4(a)). Accordingly, we can neglect the error introduced by neglecting the higher-order terms of the series expansion of exp(VDS1/2), particularly at low bias. We do not consider the dependence of the mobility with the carrier concentration. However, considering such dependence would not affect the linearity between IDS and VDS in the linear regime. (Ref. 34).
34.
34. P. Stallinga, H. L. Gomes, F. Biscarini, M. Murgia, and D. M. de Leeuw, J. Appl. Phys. 96, 52775283 (2004).
http://dx.doi.org/10.1063/1.1789279
35.
35. D. Knipp, R. A. Street, A. Volkel, and J. Ho, J. Appl. Phys. 93, 347355 (2003).
http://dx.doi.org/10.1063/1.1525068
36.
36.Mobility values for transistors in different chips but with the same geometry show an typical dispersion around 20%, much lower than the correction to the mobility arising from the form-factor kFF.
37.
37.See supplementary material at http://dx.doi.org/10.1063/1.4795014 for the numerical procedures to calculate kFF. [Supplementary Material]
38.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/10/10.1063/1.4795014
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Scheme of the nanometric OFET showing the nominal dimensions as defined by electron-beam lithography. This specific geometry is characterized by three parameters: the channel length (L) and the width of the source (W1) and drain (W2) electrodes. (b) SEM image of fabricated metallic electrodes, showing a nanogap. (c) PSD of an AFM image of a pentacene film. From the PSD, the typical grain size can be inferred. The inset shows the AFM image of pentacene.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Source-drain current (IDS ) as a function of source-drain voltage bias (VDS ) represented for different gate-source (VGS ) voltages. The main panel shows the clear tendency to saturation of the current-voltage curves for relatively low voltage bias of around 15 V. The inset is a magnification of the main panel for small source-drain voltages (VDS  < 0.2 V). In this inset, the linear regime in the source-drain current is more evident. (b) Source-drain leakage current (IDS , OFF ) as a function of the channel bias normalized by L. (c) Transfer curves or representation of the source-drain current (IDS ) as a function of gate-source (VGS ) for different channel lengths.

Image of FIG. 3.

Click to view

FIG. 3.

(a)-(c) Color-code representation of the electrostatic potential between the source and drain electrodes, as calculated from the Laplace equation. In the figure, which represents different channel lengths, it is clear how the small channel length to channel width ratio distorts the electrostatic potential distribution. The fringe current is, therefore, affected in a similar fashion following the electrostatic potential. (d) Form factor KFF as a function of the transistor channel length. The specific values represented in the figure arise from the exact calculation of the current in the transistor geometry used in this manuscript and cannot be readily extrapolated to other geometries.

Image of FIG. 4.

Click to view

FIG. 4.

Procedure to extract the zero field mobility. (a) Slope of the transfer characteristic ( in log scale) as a function of the applied voltage to the semiconducting channel. The extrapolation of the curve allows the extraction of the uncorrected zero-field mobility ( ). (b) Zero-field mobility ( ) as a function of the organic transistor channel length. For comparison, also and are plotted.

Loading

Article metrics loading...

/content/aip/journal/apl/102/10/10.1063/1.4795014
2013-03-12
2014-04-16

Abstract

Scaling down organic field effect transistors to channel areas well below the micron square could improve positively its speed and integration capabilities. Here, we report a careful study of the electronic carrier transport for such nanoscale devices. In particular, we explore the validity of standard analysis for parameters extraction in this size regime. We also study the effect of the large longitudinal electric field and fringe currents, especially their influence on the ON/OFF ratio.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/10/1.4795014.html;jsessionid=v1qfs9l0crj4.x-aip-live-02?itemId=/content/aip/journal/apl/102/10/10.1063/1.4795014&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electronic transport in sub-micron square area organic field-effect transistors
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/10/10.1063/1.4795014
10.1063/1.4795014
SEARCH_EXPAND_ITEM