NOTICE: Scitation Maintenance Sunday, March 1, 2015.

Scitation users may experience brief connectivity issues on Sunday, March 1, 2015 between 12:00 AM and 7:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, and T. Someya, Science 326, 15161519 (2009).
2. A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, Nature 444, 913917 (2006).
3. A. Dodabalapur, Mater. Today 9, 2430 (2006).
4. J. H. Cho, J. Lee, Y. Xia, B.-S. Kim, Y. He, M. J. Renn, T. P. Lodge, and C. D. Frisbie, Nature Mater. 7, 900906 (2008).
5. E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. van Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, and T. M. Klapwijk, Nature Mater. 2, 678682 (2003).
6. G. Horowitz, J. Mater. Res. 19, 19461962 (2004).
7. S. Kola, J. Sinha, and H. E. Katz, J. Polym. Sci., Part B: Polym. Phys. 50, 10901120 (2012).
8. C. Wang, H. Dong, W. Hu, Y. Liu, and D. Zhu, Chem. Rev. 112, 22082267 (2012).
9. M. Kitamura and Y. Arakawa, J. Phys.: Condens. Matter 20, 184011 (2008).
10. A. Hoppe, D. Knipp, B. Gburek, A. Benor, M. Marinkovic, and V. Wagner, Org. Electron. 11, 626631 (2010).
11. H. Klauk, U. Zschieschang, and M. Halik, J. Appl. Phys. 102, 074514 (2007).
12. E. Cantatore, T. C. T. Geuns, G. H. Gelinck, E. van Veenendaal, A. F. A. Gruijthuijsen, L. Schrijnemakers, S. Drews, and D. M. de Leeuw, IEEE J. Solid-State Circuits 42, 8492 (2007).
13. E. C. P. Smits, S. G. J. Mathijssen, P. A. van Hal, S. Setayesh, T. C. T. Geuns, K. A. H. A. Mutsaers, E. Cantatore, H. J. Wondergem, O. Werzer, R. Resel, M. Kemerink, S. Kirchmeyer, A. M. Muzafarov, S. A. Ponomarenko, B. de Boer, P. W. M. Blom, and D. M. de Leeuw, Nature 455, 956959 (2008).
14. S. Verlaak and P. Heremans, Phys. Rev. B 75, 115127 (2007).
15. G. S. Tulevski, C. Nuckolls, A. Afzali, T. O. Graham, and C. R. Kagan, Appl. Phys. Lett. 89, 183101 (2006).
16. M. Tello, M. Chiesa, C. M. Duffy, and H. Sirringhaus, Adv. Funct. Mater. 18, 39073913 (2008).
17. P. Stoliar, R. Kshirsagar, M. Massi, P. Annibale, C. Albonetti, D. M. de Leeuw, and F. Biscarini, J. Am. Chem. Soc. 129, 64776484 (2007).
18. L. Burgi, T. J. Richards, R. H. Friend, and H. Sirringhaus, J. Appl. Phys. 94, 61296137 (2003).
19. R. Joseph Kline, M. D. McGehee, and M. F. Toney, Nature Mater. 5, 222228 (2006).
20. L. Wang, D. Fine, D. Basu, and A. Dodabalapur, J. Appl. Phys. 101, 054515 (2007).
21. F. Golmar, M. Gobbi, R. Llopis, P. Stoliar, F. Casanova, and L. E. Hueso, Org. Electron. 13, 23012306 (2012).
22. L. Wang, D. Fine, T. Jung, D. Basu, H. von Seggern, and A. Dodabalapur, Appl. Phys. Lett. 85, 17721774 (2004).
23. B. A. Mattis, Y. Pei, and V. Subramanian, Appl. Phys. Lett. 86, 033113 (2005).
24. H. Yanagisawa, T. Tamaki, M. Nakamura, and K. Kudo, Thin Solid Films 464–465, 398402 (2004).
25. Y. Cao, M. L. Steigerwald, C. Nuckolls, and X. Guo, Adv. Mater. 22, 2032 (2010).
26. C. D. Dimitrakopoulos and D. J. Mascaro, IBM J. Res. Dev. 45, 1127 (2001).
27. A. Salleo and R. A. Street, J. Appl. Phys. 94, 471479 (2003).
28. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006).
29. J. N. Haddock, X. Zhang, S. Zheng, Q. Zhang, S. R. Marder, and B. Kippelen, Org. Electron. 7, 4554 (2006).
30. J. B. Lee, P. C. Chang, J. A. Liddle, and V. Subramanian, IEEE Trans. Electron Devices 52, 18741879 (2005).
31. A. R. Brown, C. P. Jarrett, D. M. de Leeuw, and M. Matters, Synth. Met. 88, 3755 (1997).
32. M. Shur, M. Hack, and J. G. Shaw, J. Appl. Phys. 66, 33713380 (1989).
33.Note that the effect of the Frenkel-Poole dependence is relatively small (Fig. 4(a)). Accordingly, we can neglect the error introduced by neglecting the higher-order terms of the series expansion of exp(VDS1/2), particularly at low bias. We do not consider the dependence of the mobility with the carrier concentration. However, considering such dependence would not affect the linearity between IDS and VDS in the linear regime. (Ref. 34).
34. P. Stallinga, H. L. Gomes, F. Biscarini, M. Murgia, and D. M. de Leeuw, J. Appl. Phys. 96, 52775283 (2004).
35. D. Knipp, R. A. Street, A. Volkel, and J. Ho, J. Appl. Phys. 93, 347355 (2003).
36.Mobility values for transistors in different chips but with the same geometry show an typical dispersion around 20%, much lower than the correction to the mobility arising from the form-factor kFF.
37.See supplementary material at for the numerical procedures to calculate kFF. [Supplementary Material]

Data & Media loading...


Article metrics loading...



Scaling down organic field effect transistors to channel areas well below the micron square could improve positively its speed and integration capabilities. Here, we report a careful study of the electronic carrier transport for such nanoscale devices. In particular, we explore the validity of standard analysis for parameters extraction in this size regime. We also study the effect of the large longitudinal electric field and fringe currents, especially their influence on the ON/OFF ratio.


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electronic transport in sub-micron square area organic field-effect transistors