1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Electronic transport in sub-micron square area organic field-effect transistors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/10/10.1063/1.4795014
1.
1. T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, and T. Someya, Science 326, 15161519 (2009).
http://dx.doi.org/10.1126/science.1179963
2.
2. A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl, and Z. Bao, Nature 444, 913917 (2006).
http://dx.doi.org/10.1038/nature05427
3.
3. A. Dodabalapur, Mater. Today 9, 2430 (2006).
http://dx.doi.org/10.1016/S1369-7021(06)71444-4
4.
4. J. H. Cho, J. Lee, Y. Xia, B.-S. Kim, Y. He, M. J. Renn, T. P. Lodge, and C. D. Frisbie, Nature Mater. 7, 900906 (2008).
http://dx.doi.org/10.1038/nmat2291
5.
5. E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. van Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, and T. M. Klapwijk, Nature Mater. 2, 678682 (2003).
http://dx.doi.org/10.1038/nmat978
6.
6. G. Horowitz, J. Mater. Res. 19, 19461962 (2004).
http://dx.doi.org/10.1557/JMR.2004.0266
7.
7. S. Kola, J. Sinha, and H. E. Katz, J. Polym. Sci., Part B: Polym. Phys. 50, 10901120 (2012).
http://dx.doi.org/10.1002/polb.23054
8.
8. C. Wang, H. Dong, W. Hu, Y. Liu, and D. Zhu, Chem. Rev. 112, 22082267 (2012).
http://dx.doi.org/10.1021/cr100380z
9.
9. M. Kitamura and Y. Arakawa, J. Phys.: Condens. Matter 20, 184011 (2008).
http://dx.doi.org/10.1088/0953-8984/20/18/184011
10.
10. A. Hoppe, D. Knipp, B. Gburek, A. Benor, M. Marinkovic, and V. Wagner, Org. Electron. 11, 626631 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.01.002
11.
11. H. Klauk, U. Zschieschang, and M. Halik, J. Appl. Phys. 102, 074514 (2007).
http://dx.doi.org/10.1063/1.2794702
12.
12. E. Cantatore, T. C. T. Geuns, G. H. Gelinck, E. van Veenendaal, A. F. A. Gruijthuijsen, L. Schrijnemakers, S. Drews, and D. M. de Leeuw, IEEE J. Solid-State Circuits 42, 8492 (2007).
http://dx.doi.org/10.1109/JSSC.2006.886556
13.
13. E. C. P. Smits, S. G. J. Mathijssen, P. A. van Hal, S. Setayesh, T. C. T. Geuns, K. A. H. A. Mutsaers, E. Cantatore, H. J. Wondergem, O. Werzer, R. Resel, M. Kemerink, S. Kirchmeyer, A. M. Muzafarov, S. A. Ponomarenko, B. de Boer, P. W. M. Blom, and D. M. de Leeuw, Nature 455, 956959 (2008).
http://dx.doi.org/10.1038/nature07320
14.
14. S. Verlaak and P. Heremans, Phys. Rev. B 75, 115127 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.115127
15.
15. G. S. Tulevski, C. Nuckolls, A. Afzali, T. O. Graham, and C. R. Kagan, Appl. Phys. Lett. 89, 183101 (2006).
http://dx.doi.org/10.1063/1.2364154
16.
16. M. Tello, M. Chiesa, C. M. Duffy, and H. Sirringhaus, Adv. Funct. Mater. 18, 39073913 (2008).
http://dx.doi.org/10.1002/adfm.200800009
17.
17. P. Stoliar, R. Kshirsagar, M. Massi, P. Annibale, C. Albonetti, D. M. de Leeuw, and F. Biscarini, J. Am. Chem. Soc. 129, 64776484 (2007).
http://dx.doi.org/10.1021/ja069235m
18.
18. L. Burgi, T. J. Richards, R. H. Friend, and H. Sirringhaus, J. Appl. Phys. 94, 61296137 (2003).
http://dx.doi.org/10.1063/1.1613369
19.
19. R. Joseph Kline, M. D. McGehee, and M. F. Toney, Nature Mater. 5, 222228 (2006).
http://dx.doi.org/10.1038/nmat1590
20.
20. L. Wang, D. Fine, D. Basu, and A. Dodabalapur, J. Appl. Phys. 101, 054515 (2007).
http://dx.doi.org/10.1063/1.2496316
21.
21. F. Golmar, M. Gobbi, R. Llopis, P. Stoliar, F. Casanova, and L. E. Hueso, Org. Electron. 13, 23012306 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.07.031
22.
22. L. Wang, D. Fine, T. Jung, D. Basu, H. von Seggern, and A. Dodabalapur, Appl. Phys. Lett. 85, 17721774 (2004).
http://dx.doi.org/10.1063/1.1790033
23.
23. B. A. Mattis, Y. Pei, and V. Subramanian, Appl. Phys. Lett. 86, 033113 (2005).
http://dx.doi.org/10.1063/1.1854217
24.
24. H. Yanagisawa, T. Tamaki, M. Nakamura, and K. Kudo, Thin Solid Films 464–465, 398402 (2004).
http://dx.doi.org/10.1016/j.tsf.2004.06.065
25.
25. Y. Cao, M. L. Steigerwald, C. Nuckolls, and X. Guo, Adv. Mater. 22, 2032 (2010).
http://dx.doi.org/10.1002/adma.200900504
26.
26. C. D. Dimitrakopoulos and D. J. Mascaro, IBM J. Res. Dev. 45, 1127 (2001).
http://dx.doi.org/10.1147/rd.451.0011
27.
27. A. Salleo and R. A. Street, J. Appl. Phys. 94, 471479 (2003).
http://dx.doi.org/10.1063/1.1581352
28.
28. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, 2006).
29.
29. J. N. Haddock, X. Zhang, S. Zheng, Q. Zhang, S. R. Marder, and B. Kippelen, Org. Electron. 7, 4554 (2006).
http://dx.doi.org/10.1016/j.orgel.2005.11.002
30.
30. J. B. Lee, P. C. Chang, J. A. Liddle, and V. Subramanian, IEEE Trans. Electron Devices 52, 18741879 (2005).
http://dx.doi.org/10.1109/TED.2005.851845
31.
31. A. R. Brown, C. P. Jarrett, D. M. de Leeuw, and M. Matters, Synth. Met. 88, 3755 (1997).
http://dx.doi.org/10.1016/S0379-6779(97)80881-8
32.
32. M. Shur, M. Hack, and J. G. Shaw, J. Appl. Phys. 66, 33713380 (1989).
http://dx.doi.org/10.1063/1.344481
33.
33.Note that the effect of the Frenkel-Poole dependence is relatively small (Fig. 4(a)). Accordingly, we can neglect the error introduced by neglecting the higher-order terms of the series expansion of exp(VDS1/2), particularly at low bias. We do not consider the dependence of the mobility with the carrier concentration. However, considering such dependence would not affect the linearity between IDS and VDS in the linear regime. (Ref. 34).
34.
34. P. Stallinga, H. L. Gomes, F. Biscarini, M. Murgia, and D. M. de Leeuw, J. Appl. Phys. 96, 52775283 (2004).
http://dx.doi.org/10.1063/1.1789279
35.
35. D. Knipp, R. A. Street, A. Volkel, and J. Ho, J. Appl. Phys. 93, 347355 (2003).
http://dx.doi.org/10.1063/1.1525068
36.
36.Mobility values for transistors in different chips but with the same geometry show an typical dispersion around 20%, much lower than the correction to the mobility arising from the form-factor kFF.
37.
37.See supplementary material at http://dx.doi.org/10.1063/1.4795014 for the numerical procedures to calculate kFF. [Supplementary Material]
38.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/10/10.1063/1.4795014
Loading
/content/aip/journal/apl/102/10/10.1063/1.4795014
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/10/10.1063/1.4795014
2013-03-12
2014-07-25

Abstract

Scaling down organic field effect transistors to channel areas well below the micron square could improve positively its speed and integration capabilities. Here, we report a careful study of the electronic carrier transport for such nanoscale devices. In particular, we explore the validity of standard analysis for parameters extraction in this size regime. We also study the effect of the large longitudinal electric field and fringe currents, especially their influence on the ON/OFF ratio.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/10/1.4795014.html;jsessionid=2c9jabklp9mhb.x-aip-live-03?itemId=/content/aip/journal/apl/102/10/10.1063/1.4795014&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electronic transport in sub-micron square area organic field-effect transistors
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/10/10.1063/1.4795014
10.1063/1.4795014
SEARCH_EXPAND_ITEM