1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Ligand chemistry of titania precursor affects transient photovoltaic behavior in inverted organic solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/10/10.1063/1.4795287
1.
1. N. Choudhury, “ UCLA researchers reach 10.6% efficiency for tandem polymer solar cells,” PV-Tech, February 16, 2012 (accessed October 4, 2012), see http://www.pv-tech.org/news/ucla_researchers_reach_10.6_efficiency_for_tandem_polymer_solar_cells.
2.
2. L. Dou, J. You, J. Yang, C.-C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, Nat. Photonics 6, 180 (2012).
http://dx.doi.org/10.1038/nphoton.2011.356
3.
3. Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Mater 22, E135 (2010).
http://dx.doi.org/10.1002/adma.200903528
4.
4. G. A. Chamberlain, Sol. Cells 8, 47 (1983).
http://dx.doi.org/10.1016/0379-6787(83)90039-X
5.
5. C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).
http://dx.doi.org/10.1063/1.96937
6.
6. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).
http://dx.doi.org/10.1126/science.270.5243.1789
7.
7. C. J. Brabec and J. R. Durrant, MRS Bull. 33, 670 (2008).
http://dx.doi.org/10.1557/mrs2008.138
8.
8. V. Shrotriya, G. Li, Y. Yao, C.-W. Chu, and Y. Yang, Appl. Phys. Lett. 88, 073508 (2006).
http://dx.doi.org/10.1063/1.2174093
9.
9. J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, Adv. Mater 18, 572 (2006).
http://dx.doi.org/10.1002/adma.200501825
10.
10. M. M. Mandoc, F. B. Kooistra, J. C. Hummelen, B. d. Boer, and P. W. M. Blom, Appl. Phys. Lett. 91, 263505 (2007).
http://dx.doi.org/10.1063/1.2821368
11.
11. P. P. Boix, G. Garcia-Belmonte, U. Munecas, M. Neophytou, C. Waldauf, and R. Pacios, Appl. Phys. Lett. 95, 233302 (2009).
http://dx.doi.org/10.1063/1.3270105
12.
12. A. Bezryadina, C. France, R. Graham, L. Yang, S. A. Carter, and G. B. Alers, Appl. Phys. Lett. 100, 013508 (2012).
http://dx.doi.org/10.1063/1.3673278
13.
13. C. S. Kim, S. S. Lee, E. D. Gomez, J. B. Kim, and Y.-L. Loo, Appl. Phys. Lett. 94, 113302 (2009).
http://dx.doi.org/10.1063/1.3099947
14.
14. S. J. Yoon, J. H. Park, H. K. Lee, and O. O. Park, Appl. Phys. Lett. 92, 143504 (2008).
http://dx.doi.org/10.1063/1.2908035
15.
15. C. S. Kim, L. L. Tinker, B. F. DiSalle, E. D. Gomez, S. Lee, S. Bernhard, and Y.-L. Loo, Adv. Mater 21, 3110 (2009).
http://dx.doi.org/10.1002/adma.200803810
16.
16. K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, Adv. Mater 19, 2445 (2007).
http://dx.doi.org/10.1002/adma.200602653
17.
17. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nat. Photonics 3, 297 (2009).
http://dx.doi.org/10.1038/nphoton.2009.69
18.
18. J. A. Felix, D. M. Fleetwood, R. D. Schrimpf, J. G. Hong, G. Lucovsky, J. R. Schwank, and M. R. Shaneyfelt, IEEE Trans. Nucl. Sci. 49, 3191 (2002).
http://dx.doi.org/10.1109/TNS.2002.805392
19.
19. K. Woo, C. J. Choi, S. J. Sim, Y. S. Cho, and Y. D. Kim, J. Mater. Sci. 35, 4539 (2000).
http://dx.doi.org/10.1023/A:1004868621334
20.
20. V. Barlier, V. Bounor-Legaré, G. Boiteux, D. Léonard, and J. Davenas, Mater. Chem. Phys. 115, 429 (2009).
http://dx.doi.org/10.1016/j.matchemphys.2009.01.003
21.
21. L. H. Slooff, J. M. Kroon, J. Loos, M. M. Koetse, and J. Sweelssen, Adv. Funct. Mater. 15, 689 (2005).
http://dx.doi.org/10.1002/adfm.200400311
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/10/10.1063/1.4795287
Loading
/content/aip/journal/apl/102/10/10.1063/1.4795287
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/10/10.1063/1.4795287
2013-03-14
2014-10-24

Abstract

The chemistry of the precursor from which charge transport layers are formed can significantly affect the device performance of organic solar cells. Here, we compare two common precursors that are used to generate titania electron transport layers and elucidate their effects on the transient characteristics of inverted bulk-heterojunction polymer solar cells comprising poly(3-hexyl hiophene) and [6,6]-phenyl-C61-butyric acid methyl ester. Substituting the isopropyl ligands of titanium isopropoxide with 2-methoxyethanol leads to electron transport layers that require a shorter illumination time to fill shallow electron traps. Furthermore, organic solar cells with titania electron transport layers prepared with such pre-modified titania precursor exhibit higher power-conversion efficiencies stemming from lower trap densities.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/10/1.4795287.html;jsessionid=e6bebls5oasbo.x-aip-live-02?itemId=/content/aip/journal/apl/102/10/10.1063/1.4795287&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ligand chemistry of titania precursor affects transient photovoltaic behavior in inverted organic solar cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/10/10.1063/1.4795287
10.1063/1.4795287
SEARCH_EXPAND_ITEM