1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
The impact of substrate temperature on the size and aspect ratio of inkjet-dissolved via holes in thin poly(4-vinyl phenol) dielectric layers
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/10/10.1063/1.4795447
1.
1. G. L. Whiting and A. C. Arias, Appl. Phys. Lett. 95, 253302 (2009).
http://dx.doi.org/10.1063/1.3276913
2.
2. T. Kawase, T. Shimoda, C. Newsome, H. Sirringhaus, and R. H. Friend, Thin Solid Films 438–439, 279 (2003).
http://dx.doi.org/10.1016/S0040-6090(03)00801-0
3.
3. S. Gamerith, A. Klug, H. Scheiber, U. Scherf, E. Moderegger, and E. List, Adv. Funct. Mater. 17, 3111 (2007).
http://dx.doi.org/10.1002/adfm.200600762
4.
4. Y. Nobusa, Y. Yomogida, S. Matsuzaki, K. Yanagi, H. Kataura, and T. Takenobu, Appl. Phys. Lett. 99, 183106 (2011).
http://dx.doi.org/10.1063/1.3657502
5.
5. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, Science 290, 2123 (2000).
http://dx.doi.org/10.1126/science.290.5499.2123
6.
6. B. J. de Gans and U. S. Schubert, Langmuir 20, 7789 (2004).
http://dx.doi.org/10.1021/la049469o
7.
7. B. J. de Gans, S. Hoeppener, and U. S. Schubert, Adv. Mater. 18, 910 (2006).
http://dx.doi.org/10.1002/adma.200502051
8.
8. S. Karabasheva, S. Baluschev, and K. Graf, Appl. Phys. Lett. 89, 031110 (2006).
http://dx.doi.org/10.1063/1.2227056
9.
9. R. Pericet-Camara, E. Bonaccurso, and K. Graf, ChemPhysChem 9, 1738 (2008).
http://dx.doi.org/10.1002/cphc.200800098
10.
10. B. J. de Gans, S. Hoeppener, and U. S. Schubert, J. Mater. Chem. 17, 3045 (2007).
http://dx.doi.org/10.1039/b701947e
11.
11. I. A. Grimaldi, A. De Girolamo Del Mauro, G. Nenna, F. Loffredo, C. Minarini, and F. Villani, J. Appl. Polym. Sci. 122, 3637 (2011).
http://dx.doi.org/10.1002/app.34776
12.
12. G. F. Li, K. Graf, E. Bonaccurso, D. S. Golovko, A. Best, and H. J. Butt, Macromol. Chem. Phys. 208, 2134 (2007).
http://dx.doi.org/10.1002/macp.200700122
13.
13. E. Bonaccurso, H. J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, Appl. Phys. Lett. 86, 124101 (2005).
http://dx.doi.org/10.1063/1.1886263
14.
14. R. Pericet-Camara, A. Best, S. K. Nett, J. S. Gutmann, and E. Bonaccurso, Opt. Express 15, 9877 (2007).
http://dx.doi.org/10.1364/OE.15.009877
15.
15. I. A. Grimaldi, A. De Girolamo Del Mauro, F. Loffredo, G. Nenna, F. Villani, and C. Minarini, Proc. SPIE 8082, 808244 (2011).
http://dx.doi.org/10.1117/12.890198
16.
16. T. Kawase, H. Sirringhaus, R. H. Friend, and T. Shimoda, Adv. Mater. 13, 1601 (2001).
http://dx.doi.org/10.1002/1521-4095(200111)13:21<1601::AID-ADMA1601>3.0.CO;2-X
17.
17. Y. J. Xia and R. H. Friend, Appl. Phys. Lett. 88, 163508 (2006).
http://dx.doi.org/10.1063/1.2196229
18.
18. Y. J. Xia and R. H. Friend, Appl. Phys. Lett. 90, 253513 (2007).
http://dx.doi.org/10.1063/1.2749189
19.
19. Y. Zhang, C. Liu, and D. C. Whalley, J. Phys. D: Appl. Phys. 45, 125303 (2012).
http://dx.doi.org/10.1088/0022-3727/45/12/125303
20.
20. B. Derby, Annu. Rev. Mater. Res. 40, 395 (2010).
http://dx.doi.org/10.1146/annurev-matsci-070909-104502
21.
21. R. D. Deegan, Phys. Rev. E 61, 475 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.475
22.
22. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Nature 389, 827 (1997).
http://dx.doi.org/10.1038/39827
23.
23. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Phys. Rev. E 62, 756 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.756
24.
24. F. Schönfeld, K. H. Graf, S. Hardt, and H. J. Butt, Int. J. Heat Mass Transfer 51, 3696 (2008).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.12.027
25.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/10/10.1063/1.4795447
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Superimposition of the via hole profile evolution versus the number of drops (Nd ) in a thin PVPh polymer film at 20 °C and an indication of where outer diameter (Dout ), inner diameter (Din ), ridge height (Hr ), and the depth of via hole (Hd ) are taken for a via hole created by 11 ethanol drops. (b) Superimposition of the via hole profile evolution versus the number of drops (Nd ) in a thin PVPh polymer film at 80 °C.

Image of FIG. 2.

Click to view

FIG. 2.

(a) The evolution of Dout versus Nd at different printing stage temperatures at a droplet ejection frequency of 1Hz. (b) The evolution of Din versus Nd at different printing stage temperatures. (c) The profile of Hd versus Nd at different printing stage temperatures. The dashed line indicates the polymer thickness. (d) The evolution of Hr versus Nd at different temperatures.

Image of FIG. 3.

Click to view

FIG. 3.

A schematic illustration of the proposed mechanism of via hole profile evolution with Nd for ethanol drops at higher temperatures. (a) A sessile drop wets the patterned polymer layer (up to its ridge at maximum distance) dissolving more polymer further down the PVPh film and the dissolved polymer gets re-deposited at the periphery, as indicated by the dotted line. (b) A new via hole forms after solvent evaporation. (c) Another drop wets within the hole (up to its ridge at maximum distance) and keeps transferring the dissolved polymer outward leading to a larger Din due to a faster flow velocity closer to the contact line. (d) The new profile after the PVPh film is thoroughly penetrated, and the solvent completely evaporates when the maximum transfer distance is achieved.

Image of FIG. 4.

Click to view

FIG. 4.

(a) The aspect ratio of inkjet-etched via holes versus temperature. Dimensions (Hd and Din ) are taken from completed etched via holes. (b) Dout /Din versus Nd at different temperatures. (c) Sidewall slope of the completely etched via holes versus temperature with an inset illustration of the difference between an ideal and practical via hole profile.

Loading

Article metrics loading...

/content/aip/journal/apl/102/10/10.1063/1.4795447
2013-03-14
2014-04-16

Abstract

The authors demonstrate the effect of substrate temperature on the relationship between the inkjet-etched via hole size and the number of drops of etchant dispensed. A mechanism for the different via hole size evolution versus the number of drops is proposed. An explanation for the interrelationship between the solvent evaporation rate and polymer re-deposition is presented. The aspect ratio of via holes produced is found to increase with the substrate temperature. Therefore, higher temperatures can be used to reduce the size and increase the aspect ratio of via holes fabricated by inkjet etching.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/10/1.4795447.html;jsessionid=190mmakkpzy60.x-aip-live-06?itemId=/content/aip/journal/apl/102/10/10.1063/1.4795447&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The impact of substrate temperature on the size and aspect ratio of inkjet-dissolved via holes in thin poly(4-vinyl phenol) dielectric layers
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/10/10.1063/1.4795447
10.1063/1.4795447
SEARCH_EXPAND_ITEM