1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
The impact of substrate temperature on the size and aspect ratio of inkjet-dissolved via holes in thin poly(4-vinyl phenol) dielectric layers
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/10/10.1063/1.4795447
1.
1. G. L. Whiting and A. C. Arias, Appl. Phys. Lett. 95, 253302 (2009).
http://dx.doi.org/10.1063/1.3276913
2.
2. T. Kawase, T. Shimoda, C. Newsome, H. Sirringhaus, and R. H. Friend, Thin Solid Films 438–439, 279 (2003).
http://dx.doi.org/10.1016/S0040-6090(03)00801-0
3.
3. S. Gamerith, A. Klug, H. Scheiber, U. Scherf, E. Moderegger, and E. List, Adv. Funct. Mater. 17, 3111 (2007).
http://dx.doi.org/10.1002/adfm.200600762
4.
4. Y. Nobusa, Y. Yomogida, S. Matsuzaki, K. Yanagi, H. Kataura, and T. Takenobu, Appl. Phys. Lett. 99, 183106 (2011).
http://dx.doi.org/10.1063/1.3657502
5.
5. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, Science 290, 2123 (2000).
http://dx.doi.org/10.1126/science.290.5499.2123
6.
6. B. J. de Gans and U. S. Schubert, Langmuir 20, 7789 (2004).
http://dx.doi.org/10.1021/la049469o
7.
7. B. J. de Gans, S. Hoeppener, and U. S. Schubert, Adv. Mater. 18, 910 (2006).
http://dx.doi.org/10.1002/adma.200502051
8.
8. S. Karabasheva, S. Baluschev, and K. Graf, Appl. Phys. Lett. 89, 031110 (2006).
http://dx.doi.org/10.1063/1.2227056
9.
9. R. Pericet-Camara, E. Bonaccurso, and K. Graf, ChemPhysChem 9, 1738 (2008).
http://dx.doi.org/10.1002/cphc.200800098
10.
10. B. J. de Gans, S. Hoeppener, and U. S. Schubert, J. Mater. Chem. 17, 3045 (2007).
http://dx.doi.org/10.1039/b701947e
11.
11. I. A. Grimaldi, A. De Girolamo Del Mauro, G. Nenna, F. Loffredo, C. Minarini, and F. Villani, J. Appl. Polym. Sci. 122, 3637 (2011).
http://dx.doi.org/10.1002/app.34776
12.
12. G. F. Li, K. Graf, E. Bonaccurso, D. S. Golovko, A. Best, and H. J. Butt, Macromol. Chem. Phys. 208, 2134 (2007).
http://dx.doi.org/10.1002/macp.200700122
13.
13. E. Bonaccurso, H. J. Butt, B. Hankeln, B. Niesenhaus, and K. Graf, Appl. Phys. Lett. 86, 124101 (2005).
http://dx.doi.org/10.1063/1.1886263
14.
14. R. Pericet-Camara, A. Best, S. K. Nett, J. S. Gutmann, and E. Bonaccurso, Opt. Express 15, 9877 (2007).
http://dx.doi.org/10.1364/OE.15.009877
15.
15. I. A. Grimaldi, A. De Girolamo Del Mauro, F. Loffredo, G. Nenna, F. Villani, and C. Minarini, Proc. SPIE 8082, 808244 (2011).
http://dx.doi.org/10.1117/12.890198
16.
16. T. Kawase, H. Sirringhaus, R. H. Friend, and T. Shimoda, Adv. Mater. 13, 1601 (2001).
http://dx.doi.org/10.1002/1521-4095(200111)13:21<1601::AID-ADMA1601>3.0.CO;2-X
17.
17. Y. J. Xia and R. H. Friend, Appl. Phys. Lett. 88, 163508 (2006).
http://dx.doi.org/10.1063/1.2196229
18.
18. Y. J. Xia and R. H. Friend, Appl. Phys. Lett. 90, 253513 (2007).
http://dx.doi.org/10.1063/1.2749189
19.
19. Y. Zhang, C. Liu, and D. C. Whalley, J. Phys. D: Appl. Phys. 45, 125303 (2012).
http://dx.doi.org/10.1088/0022-3727/45/12/125303
20.
20. B. Derby, Annu. Rev. Mater. Res. 40, 395 (2010).
http://dx.doi.org/10.1146/annurev-matsci-070909-104502
21.
21. R. D. Deegan, Phys. Rev. E 61, 475 (2000).
http://dx.doi.org/10.1103/PhysRevE.61.475
22.
22. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Nature 389, 827 (1997).
http://dx.doi.org/10.1038/39827
23.
23. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Phys. Rev. E 62, 756 (2000).
http://dx.doi.org/10.1103/PhysRevE.62.756
24.
24. F. Schönfeld, K. H. Graf, S. Hardt, and H. J. Butt, Int. J. Heat Mass Transfer 51, 3696 (2008).
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.12.027
25.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/10/10.1063/1.4795447
Loading
/content/aip/journal/apl/102/10/10.1063/1.4795447
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/10/10.1063/1.4795447
2013-03-14
2014-09-19

Abstract

The authors demonstrate the effect of substrate temperature on the relationship between the inkjet-etched via hole size and the number of drops of etchant dispensed. A mechanism for the different via hole size evolution versus the number of drops is proposed. An explanation for the interrelationship between the solvent evaporation rate and polymer re-deposition is presented. The aspect ratio of via holes produced is found to increase with the substrate temperature. Therefore, higher temperatures can be used to reduce the size and increase the aspect ratio of via holes fabricated by inkjet etching.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/10/1.4795447.html;jsessionid=dfmj99rtpq96k.x-aip-live-02?itemId=/content/aip/journal/apl/102/10/10.1063/1.4795447&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The impact of substrate temperature on the size and aspect ratio of inkjet-dissolved via holes in thin poly(4-vinyl phenol) dielectric layers
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/10/10.1063/1.4795447
10.1063/1.4795447
SEARCH_EXPAND_ITEM