1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Identifying the roles of the excited states on the magnetoconductance in tris-(8-hydroxyquinolinato) aluminum
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/11/10.1063/1.4795937
1.
1. J. Kalinowski, J. Szmytkowski, and W. Stampor, Chem. Phys. Lett. 378, 380 (2003).
http://dx.doi.org/10.1016/j.cplett.2003.07.010
2.
2. Y. Sheng, T. D. Nguyen, G. Veeraraghavan, Ö. Mermer, and M. Wohlgenannt, Phys. Rev. B 75, 035202 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035202
3.
3. P. Desai, P. Shakya, T. Kreouzis, and W. P. Gillin, Phys. Rev. B 76, 235202 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.235202
4.
4. T. D. Nguyen, Y. Sheng, J. Rybicki, and M. Wohlgenannt, Phys. Rev. B 77, 235209 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.235209
5.
5. N. Rolfe, P. Desai, P. Shakya, T. Kreouzis, and W. P. Gillin, J. Appl. Phys. 104, 083703 (2008).
http://dx.doi.org/10.1063/1.3000454
6.
6. T. D. Nguyen, T. P. Basel, Y. Pu, X. Li, E. Ehrenfreund, and Z. V. Vardeny, Phys. Rev. B 85, 245437 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.245437
7.
7. A. R. B. M. Yusoff, W. J. da Silva, J. P. M. Serbena, M. S. Meruvia, and I. A. Hümmelgen, Appl. Phys. Lett. 94, 253305 (2009).
http://dx.doi.org/10.1063/1.3159825
8.
8. L. Y. Xin, C. Li, F. Li, S. Y. Liu, and B. Hu, Appl. Phys. Lett. 95, 123306 (2009).
http://dx.doi.org/10.1063/1.3233973
9.
9. W. P. Gillin, S. Zhang, N. J. Rolfe, P. Desai, P. Shakya, A. J. Drew, and T. Kreouzis, Phys. Rev. B 82, 195208 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.195208
10.
10. H. Kang, C. H. Park, J. Lim, C. Lee, W. Kang, and C. S. Yoon, Org. Electron. 13, 1012 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.02.025
11.
11. P. A. Bobbert, T. D. Nguyen, F. W. A. Van Oost, B. Koopmans, and M. Wohlgenannt, Phys. Rev. Lett. 99, 216801 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.216801
12.
12. F. L. Bloom, W. Wagemans, M. Kemerink, and B. Koopmans, Appl. Phys. Lett. 93, 263302 (2008).
http://dx.doi.org/10.1063/1.3059555
13.
13. T. Reichert and T. P. I. Saragi, Appl. Phys. Lett. 98, 063307 (2011).
http://dx.doi.org/10.1063/1.3554388
14.
14. Y. L. Lei, Q. M. Zhang, L. J. Chen, Y. T. You, and Z. H. Xiong, Org. Electron. 13, 2003 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.06.007
15.
15. Z. H. Xu and B. Hu, Adv. Funct. Mater. 18, 2611 (2008).
http://dx.doi.org/10.1002/adfm.200800331
16.
16. W. Wagemans, W. J. Engelen, F. L. Bloom, and B. Koopmans, Synth. Metal. 160, 266 (2010).
http://dx.doi.org/10.1016/j.synthmet.2009.11.010
17.
17. Y. L. Lei, Q. L. Song, Y. Zhang, P. Chen, R. Liu, Q. M. Zhang, and Z. H. Xiong, Org. Electron. 10, 1288 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.07.010
18.
18.See supplementary material http://dx.doi.org/10.1063/1.4795937 for pure Lorentzian and non-Lorentzian fit to the data. [Supplementary Material]
19.
19. S. A. Bagnich, U. Niedermeier, C. Melzer, W. Sarfert, and H. von Seggern, J. Appl. Phys. 106, 113702 (2009).
http://dx.doi.org/10.1063/1.3260249
20.
20. W. Wagemans and B. Koopmans, Phys. Status Solidi B 248, 766 (2011).
http://dx.doi.org/10.1002/pssb.201140816
21.
21. Y. C. Luo, H. Aziz, G. Xu, and Z. Popovic, Chem. Mater. 19, 2288 (2007).
http://dx.doi.org/10.1021/cm062105s
22.
22. M. Ichikawa, R. Naitou, T. Koyama, and Y. Taniguchi, Jpn. J. Appl. Phys. 40, L1068 (2001).
http://dx.doi.org/10.1143/JJAP.40.L1068
23.
23. D. Ray, M. P. Patankar, N. Periasamy, and K. L. Narasimhan, J. Appl. Phys. 98, 123704 (2005).
http://dx.doi.org/10.1063/1.2143119
24.
24. S. J. Zhang, J. Y. Song, T. Kreouzis, and W. P. Gillin, J. Appl. Phys. 106, 043511 (2009).
http://dx.doi.org/10.1063/1.3204015
25.
25. B. R. Gautam, T. D. Nguyen, E. Ehrenfreund, and Z. V. Vardeny, Phys. Rev. B 85, 205207 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.205207
26.
26. W. C. H. Choy and H. H. Fong, J. Phys. D: Appl. Phys. 41, 155109 (2008).
http://dx.doi.org/10.1088/0022-3727/41/15/155109
27.
27. V. Ern and R. E. Merrifield, Phys. Rev. Lett. 21, 609 (1968).
http://dx.doi.org/10.1103/PhysRevLett.21.609
28.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/11/10.1063/1.4795937
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) MC(V) curves for ITO/Alq3/LiF/Al with light illumination at temperatures above 150 K, B = 100 mT. (b) The current-voltage characteristics of the ITO/Alq3/LiF/Al in the dark above 150 K. The inset displays the current-voltage characteristics of the studied sample with light illumination.

Image of FIG. 2.

Click to view

FIG. 2.

Photoinduced MC as a function of the applied magnetic field at forward (a) and reverse (b) bias voltages for the Alq3 single layer device at room temperature. The solid lines are fitting results using Eq. (1) .

Image of FIG. 3.

Click to view

FIG. 3.

The dependence of B L0 (a) and B H0 (b) on the applied voltage. The B L0 and B H0 values are the results of fitting the data in Fig. 2 to Eq. (1) .

Image of FIG. 4.

Click to view

FIG. 4.

The pre-factor a L and a H as a function of applied bias voltage: (a) in the reverse bias regime; (b) in the forward bias regime. The a L and a H is a result of fitting the data in Fig. 2 to Eq. (1) . The solid lines are guides to the eyes. The inset in (a) displays the low-field component (blue line) and high-field component (red line) from the fits at selected forward bias of 2 V and reverse bias of −4 V.

Loading

Article metrics loading...

/content/aip/journal/apl/102/11/10.1063/1.4795937
2013-03-18
2014-04-24

Abstract

Magnetoconductance response (MC) in illuminated tris-(8-hydroxyquinolinato) aluminum (Alq3) single layer has been studied to clarify the role of excitons and electron-hole (e-h) pairs on the MC generation. By fitting the MC curves at different bias conditions, the contribution of e-h pairs and excitons to the MC can be differentiated in the same material. The fitting results indicated that hyperfine mixing between the singlet and triplet e-h pairs results in a Lorentzian type MC within hyperfine field and charge reaction of triplet excitons induces a high-field MC following a non-Lorentzian shape, respectively. Moreover, the characteristic field width for the high-field MC is very different at forward and reverse bias regime, implying that the rate strength for the hole/electron-exciton reactions in Alq3 should be treated separately.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/11/1.4795937.html;jsessionid=2fmgc7dgr8ag.x-aip-live-06?itemId=/content/aip/journal/apl/102/11/10.1063/1.4795937&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Identifying the roles of the excited states on the magnetoconductance in tris-(8-hydroxyquinolinato) aluminum
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/11/10.1063/1.4795937
10.1063/1.4795937
SEARCH_EXPAND_ITEM