1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Bias stress effect in polyelectrolyte-gated organic field-effect transistors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/11/10.1063/1.4798512
1.
1. D. Braga and G. Horowitz, Adv. Mater. 21, 1473 (2009).
http://dx.doi.org/10.1002/adma.200802733
2.
2. E. C. P. Smits, S. G. J. Mathijssen, P. A. van Hal, S. Setayesh, T. C. T. Geuns, K. A. H. A. Mutsaers, E. Cantatore, H. J. Wondergem, O. Werzer, R. Resel, M. Kemerink, S. Kirchmeyer, A. M. Muzafarov, S. A. Ponomarenko, B. de Boer, P. W. M. Blom, and D. M. de Leeuw, Nature 455, 956 (2008).
http://dx.doi.org/10.1038/nature07320
3.
3. B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, and W. Li, Nature 403, 521 (2000).
http://dx.doi.org/10.1038/35000530
4.
4. H. L. Gomes, P. Stallinga, F. Dinelli, M. Murgia, F. Biscarini, D. M. de Leeuw, M. Muccini, and K. Müllen, Polym. Adv. Technol. 16, 227 (2005).
http://dx.doi.org/10.1002/pat.558
5.
5. T. Richards and H. Sirringhaus, Appl. Phys. Lett. 92, 023512 (2008).
http://dx.doi.org/10.1063/1.2825584
6.
6. B. Lee, A. Wan, D. Mastrogiovanni, J. E. Anthony, E. Garfunkel, and V. Podzorov, Phys. Rev. B 82, 085302 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.085302
7.
7. U. Zschieschang, R. T. Weitz, K. Kern, and H. Klauk, Appl. Phys. A 95, 139 (2009).
http://dx.doi.org/10.1007/s00339-008-5019-8
8.
8. S. G. J. Mathijssen, M. Cölle, H. Gomes, E. C. P. Smits, B. de Boer, I. McCulloch, P. A. Bobbert, and D. M. de Leeuw, Adv. Mater. 19, 2785 (2007).
http://dx.doi.org/10.1002/adma.200602798
9.
9. A. Salleo and R. A. Street, J. Appl. Phys. 94, 471 (2003).
http://dx.doi.org/10.1063/1.1581352
10.
10. C. Goldmann, C. Krellner, K. P. Pernstich, S. Haas, D. J. Gundlach, and B. Batlogg, J. Appl. Phys. 99, 034507 (2006).
http://dx.doi.org/10.1063/1.2170421
11.
11. R. A. Street, M. L. Chabinyc, F. Endicott, and B. Ong, J. Appl. Phys. 100, 114518 (2006).
http://dx.doi.org/10.1063/1.2398798
12.
12. A. Sharma, S. G. J. Mathijssen, E. C. P. Smits, M. Kemerink, D. M. de Leeuw, and P. A. Bobbert, Phys. Rev. B 82, 075322 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.075322
13.
13. H. Sirringhaus, Adv. Mater. 21, 3859 (2009).
http://dx.doi.org/10.1002/adma.200901136
14.
14. K. Suemori, S. Uemura, M. Yoshida, S. Hoshino, N. Takada, T. Kodzasa, and T. Kamata, Appl. Phys. Lett. 91, 192112 (2007).
http://dx.doi.org/10.1063/1.2812573
15.
15. K. Suemori, S. Uemura, M. Yoshida, S. Hoshino, N. Takada, T. Kodzasa, and T. Kamata, Appl. Phys. Lett. 93, 033308 (2008).
http://dx.doi.org/10.1063/1.2957987
16.
16. A. Benor, A. Hoppe, V. Wagner, and D. Knipp, Org. Electron. 8, 749 (2007).
http://dx.doi.org/10.1016/j.orgel.2007.06.005
17.
17. C. B. Park, T. Yokoyama, T. Nishimura, K. Kita, and A. Toriumi, J. Electrochem. Soc. 155, H575 (2008).
http://dx.doi.org/10.1149/1.2938372
18.
18. S. G. J. Mathijssen, M.-J. Spijkman, A.-M. Andringa, P. A. van Hal, I. McCulloch, M. Kemerink, R. A. J. Janssen, and D. M. de Leeuw, Adv. Mater. 22, 5105 (2010).
http://dx.doi.org/10.1002/adma.201001865
19.
19. S. D. Wang, T. Minari, T. Miyadera, Y. Aoyagi, and K. Tsukagoshi, Appl. Phys. Lett. 92, 063305 (2008).
http://dx.doi.org/10.1063/1.2844857
20.
20. R. A. Street, A. Salleo, and M. L. Chabinyc, Phys. Rev. B 68, 085316 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.085316
21.
21. A. Sharma, S. G. J. Mathijssen, M. Kemerink, D. M. de Leeuw, and P. A. Bobbert, Appl. Phys. Lett. 95, 253305 (2009).
http://dx.doi.org/10.1063/1.3275807
22.
22. L. Herlogsson, X. Crispin, N. D. Robinson, M. Sandberg, O. J. Hagel, G. Gustafsson, and M. Berggren, Adv. Mater. 19, 97 (2007).
http://dx.doi.org/10.1002/adma.200600871
23.
23. E. Said, X. Crispin, L. Herlogsson, S. Elhag, N. D. Robinson, and M. Berggren, Appl. Phys. Lett. 89, 143507 (2006).
http://dx.doi.org/10.1063/1.2358315
24.
24. L. Herlogsson, M. Cölle, S. Tierney, X. Crispin, and M. Berggren, Adv. Mater. 22, 72 (2010).
http://dx.doi.org/10.1002/adma.200901850
25.
25. F. R. Libsch and J. Kanicki, Appl. Phys. Lett. 62, 1286 (1993).
http://dx.doi.org/10.1063/1.108709
26.
26. S. Zafar, A. Callegari, E. Gusev, and M. V. Fischetti, J. Appl. Phys. 93, 9298 (2003).
http://dx.doi.org/10.1063/1.1570933
27.
27. J.-M. Lee, I.-T. Cho, J.-H. Lee, and H.-I. Kwon, Appl. Phys. Lett. 93, 093504 (2008).
http://dx.doi.org/10.1063/1.2977865
28.
28. S. C. Deane, R. B. Wehrspohn, and M. J. Powell, Phys. Rev. B 58, 12625 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.12625
29.
29. M. Barra, F. V. Di Girolamo, N. A. Minder, I. G. Lezama, Z. Chen, A. Facchetti, A. F. Morpurgo, and A. Cassinese, Appl. Phys. Lett. 100, 133301 (2012).
http://dx.doi.org/10.1063/1.3698341
30.
30. T. J. Peckham, J. Schmeisser, and S. Holdcroft, J. Phys. Chem. B 112, 2848 (2008).
http://dx.doi.org/10.1021/jp077218t
31.
31. O. Larsson, E. Said, M. Berggren, and X. Crispin, Adv. Funct. Mater. 19, 3334 (2009).
http://dx.doi.org/10.1002/adfm.200900588
32.
32. J. R. Varcoe, Phys. Chem. Chem. Phys. 9, 1479 (2007).
http://dx.doi.org/10.1039/b615478f
33.
33. S. Cui, J. Liu, M. E. Selvan, D. J. Keffer, B. J. Edwards, and W. V. Steele, J. Phys. Chem. B 111, 2208 (2007).
http://dx.doi.org/10.1021/jp066388n
34.
34. G. T. Yu and S. K. Yen, Appl. Surf. Sci. 202, 68 (2002).
http://dx.doi.org/10.1016/S0169-4332(02)00886-3
35.
35.See supplementary material at http://dx.doi.org/10.1063/1.4798512 for above-ambient temperature dependent measurements and threshold voltage shift fitted with the stretched-exponential function. [Supplementary Material]
36.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/11/10.1063/1.4798512
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Transfer curves as a function of (a) stressing and (b) recovery time were measured up to 2 h with a 5 min stressing and recovery cycles. The applied gate bias during stressing was −0.5 V along with a drain bias of −0.1 V. The gate and drain electrodes were grounded during recovery cycles. The inset in Figure 1(a) shows the transistor structure. (c) Threshold voltage vs. time. The measurement was done at 22 °C, 40% RH, and in darkness.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Absolute threshold voltage shift versus time at different temperatures, all data are under nitrogen atmosphere, 5% RH, and in darkness. (b) A linear fit of the relaxation time, τ, versus inverse of temperature. Activation energy for the transport of protons is extracted from this figure and is found to be 0.82 eV.

Image of FIG. 3.

Click to view

FIG. 3.

A cross section of the transistor showing the bias stress mechanism where in the presence of water a hole is converted into a proton that subsequently migrates into the gate insulator towards the gate/electrolyte interface creating an additional proton that is not balanced, thus leading to a shift of the threshold. It is important to note that there is also another electric double layer present at the P3HT/PSSH interface consisting of the anions in the polyelectrolyte and the holes in the channel, but it is not shown in the figure for clarity reasons.

Loading

Article metrics loading...

/content/aip/journal/apl/102/11/10.1063/1.4798512
2013-03-21
2014-04-25

Abstract

A main factor contributing to bias stress instability in organic transistors is charge trapping of mobile carriers near the gate insulator-semiconductor interface into localized electronic states. In this paper, we study the bias stress behavior in low-voltage (p-type) polyelectrolyte-gated organic field effect transistors (EGOFETs) at various temperatures. Stressing and recovery in these EGOFETs are found to occur six orders of magntiude faster than typical bias stress/recovery reported for dielectric-gated OFETs. The mechanism proposed for EGOFETs involves an electron transfer reaction between water and the charged semiconductor channel that promotes the creation of extra protons diffusing into the polyelectrolyte.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/11/1.4798512.html;jsessionid=ah20fr6bunod0.x-aip-live-03?itemId=/content/aip/journal/apl/102/11/10.1063/1.4798512&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Bias stress effect in polyelectrolyte-gated organic field-effect transistors
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/11/10.1063/1.4798512
10.1063/1.4798512
SEARCH_EXPAND_ITEM