1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
The role of Ag nanoparticles in inverted polymer solar cells: Surface plasmon resonance and backscattering centers
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/12/10.1063/1.4798553
1.
1. G. Li, R. Zhu, and Y. Yang, Nat. Photonics 6, 153 (2012).
http://dx.doi.org/10.1038/nphoton.2012.11
2.
2. L. Bian, E. Zhu, J. Tang, W. Tang, and F. Zhang, Prog. Polym. Sci. 37, 1292 (2012).
http://dx.doi.org/10.1016/j.progpolymsci.2012.03.001
3.
3. H. Zang, Y. Liang, L. Yu, and B. Hu, Adv. Energy Mater. 1, 923 (2011).
http://dx.doi.org/10.1002/aenm.201100304
4.
4. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nat. Photonics 6, 591 (2012).
http://dx.doi.org/10.1038/nphoton.2012.190
5.
5. J. Hou, H. Chen, S. Zhang, G. Li, and Y. Yang, J. Am. Chem. Soc. 130, 16144 (2008).
http://dx.doi.org/10.1021/ja806687u
6.
6. S. Wen, J. Pei, P. Li, Y. Zhou, W. Cheng, Q. Dong, Z. Li, and W. Tian, J. Polym. Sci., Part A: Polym. Chem. 49, 2715 (2011).
http://dx.doi.org/10.1002/pola.24704
7.
7. E. Yu and J. Lagemaat, MRS Bull. 36, 424 (2011).
http://dx.doi.org/10.1557/mrs.2011.109
8.
8. H. Hoppe and N. Sariciftci, J. Mater. Res. 19, 1924 (2004).
http://dx.doi.org/10.1557/JMR.2004.0252
9.
9. W. Yu, L. Shen, F. Meng, Y. Long, S. Ruan, and W. Chen, Sol. Energy Mater. Sol. Cells 100, 226 (2012).
http://dx.doi.org/10.1016/j.solmat.2012.01.021
10.
10. Y. Long, Appl. Phys. Lett. 95, 193301 (2009).
http://dx.doi.org/10.1063/1.3262967
11.
11. W. Yu, L. Shen, Y. Long, W. Guo, F. Meng, S. Ruan, X. Jia, H. Ma, and W. Chen, Appl. Phys. Lett. 101, 153307 (2012).
http://dx.doi.org/10.1063/1.4760229
12.
12. D. Ko, J. Tumbleston, L. Zhang, S. Williams, J. DeSimone, R. Lopez, and E. Samulski, Nano Lett. 9, 2742 (2009).
http://dx.doi.org/10.1021/nl901232p
13.
13. K. Catchpole and A. Polman, Appl. Phys. Lett. 93, 191113 (2008).
http://dx.doi.org/10.1063/1.3021072
14.
14. A. Kulkarni, K. Noone, K. Munechika, S. Guyer, and D. Ginger, Nano Lett. 10, 1501 (2010).
http://dx.doi.org/10.1021/nl100615e
15.
15. Y. Su, Y. Ke, S. Cai, and Q. Yao, Light Sci. Appl. 1, e14 (2012).
http://dx.doi.org/10.1038/lsa.2012.14
16.
16. A. Baba, N. Aoki, K. Shinbo, K. Kato, and F. Kaneko, ACS Appl. Mater. Interfaces 3, 2080 (2011).
http://dx.doi.org/10.1021/am200304x
17.
17. J. You, X. Li, F. Xie, W. E. I. Sha, H. W. Kwong, G. Li, C. H. Choy, and Y. Yang, Adv. Energy Mater. 2, 1203 (2012).
http://dx.doi.org/10.1002/aenm.201200108
18.
18. M. Heo, H. Cho, J. W. Jung, J. R. Jeong, S. Park, and J. Y. Kim, Adv. Mater. 23, 5689 (2011).
http://dx.doi.org/10.1002/adma.201103753
19.
19. J. Wu, F. Chen, Y. Hsiao, F. Chien, P. Chen, C. Kuo, M. Huang, and C. Hsu, ACS Nano 5, 959 (2011).
http://dx.doi.org/10.1021/nn102295p
20.
20. L. Shen, G. Zhu, W. Guo, C. Tao, X. Zhang, C. Liu, W. Chen, S. Ruan, and Z. Zhong, Appl. Phys. Lett. 92, 073307 (2008).
http://dx.doi.org/10.1063/1.2884270
21.
21. K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, and J. Manca, Nature Mater. 8, 904 (2009).
http://dx.doi.org/10.1038/nmat2548
22.
22. F. Meng, S. Liu, Y. Wang, C. Tao, P. Xu, W. Guo, L. Shen, X. Zhang, and S. Ruan, J. Mater. Chem. 22, 22382 (2012).
http://dx.doi.org/10.1039/c2jm35513b
23.
23. D. Wang, D. Kim, K. Choi, J. Seo, S. Im, J. Park, O. Park, and A. Heeger, Angew. Chem. 123, 5633 (2011).
http://dx.doi.org/10.1002/ange.201101021
24.
24. H. Atwater and A. Polman, Nature Mater. 9, 205 (2010).
http://dx.doi.org/10.1038/nmat2629
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/12/10.1063/1.4798553
Loading
/content/aip/journal/apl/102/12/10.1063/1.4798553
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/12/10.1063/1.4798553
2013-03-26
2014-10-26

Abstract

Here, we demonstrate silver (Ag) nanoparticles (NPs) existing in molybdenum trioxide (MoO3) buffer layers can improve the photocurrent by surface plasmon resonance (SPR) and backscattering enhancement. The device structure is glass/indium tin oxides/titanium dioxide (TiO2)/regioregular poly(3-hexylthiophene):[6,6]-phenyl C61 butyric acid methyl ester/MoO3/Ag NPs/MoO3/Ag. Compared to the device without Ag NPs, the short current density (Jsc ) is improved from 7.76 ± 0.14 mA/cm2 to 8.89 ± 0.12 mA/cm2, and the power conversion efficiency is also enhanced from 2.70% ± 0.11% to 3.35% ± 0.08%. The transmittance spectra show that the device with Ag NPs has weaker transmittance than the device without, which could be attributed to the photons absorption of Ag NPs and light scattering by Ag NPs. The absorption profile of the devices with or without Ag NPs is simulated using finite-difference time-domain methods. It is approved that the Ag NPs result in the absorption improvement by SPR and backscattering enhancement.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/12/1.4798553.html;jsessionid=4m85ph9kmaqla.x-aip-live-06?itemId=/content/aip/journal/apl/102/12/10.1063/1.4798553&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: The role of Ag nanoparticles in inverted polymer solar cells: Surface plasmon resonance and backscattering centers
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/12/10.1063/1.4798553
10.1063/1.4798553
SEARCH_EXPAND_ITEM