1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Efficient inverted polymer solar cells with thermal-evaporated and solution-processed small molecular electron extraction layer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/13/10.1063/1.4799833
1.
1. G. Dennler, M. C. Scharber, and C. J. Brabec, Adv. Mater. 21, 1323 (2009).
http://dx.doi.org/10.1002/adma.200801283
2.
2. P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, Adv. Mater. 19, 1551 (2007).
http://dx.doi.org/10.1002/adma.200601093
3.
3. J. Chen and Y. Cao, Acc. Chem. Res. 42, 1709 (2009).
http://dx.doi.org/10.1021/ar900061z
4.
4. L. T. Dou, J. B. You, J. Yang, C. C. Chen, Y. J. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, Nat. Photonics 6, 180 (2012).
http://dx.doi.org/10.1038/nphoton.2011.356
5.
5. W. J. Potscavage, Jr., A. Sharma, and B. Kippelen, Acc. Chem. Res. 42, 1758 (2009).
http://dx.doi.org/10.1021/ar900139v
6.
6. H. Ma, H. L. Yip, F. Huang, and A. K.-Y. Jen, Adv. Funct. Mater. 20, 1371 (2010).
http://dx.doi.org/10.1002/adfm.200902236
7.
7. Z. Q. Xu, J. Li, J. P. Yang, P. P. Cheng, J. Zhao, S. T. Lee, Y. Q. Li, and J. X. Tang, Appl. Phys. Lett. 98, 253303 (2011).
http://dx.doi.org/10.1063/1.3601853
8.
8. C. Y. Li, T. C. Wen, T. H. Lee, T. F. Guo, J. C. A. Huang, Y. C. Lin, and Y. J. Hsu, J. Mater. Chem. 19, 1643 (2009).
http://dx.doi.org/10.1039/b815523b
9.
9. Z. Xu, L. M. Chen, G. W. Yang, C. H. Huang, J. H. Hou, Y. Wu, G. Li, C. S. Hsu, and Y. Yang, Adv. Funct. Mater. 19, 1227 (2009).
http://dx.doi.org/10.1002/adfm.200801286
10.
10. M. Campoy-Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchrgoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. D. C. Bradley, and J. Nelson, Nature Mater. 7, 158 (2008).
http://dx.doi.org/10.1038/nmat2102
11.
11. S. Sista, M. H. Park, Z. R. Hong, Y. Wu, J. H. Hou, W. L. Kwan, G. Li, and Y. Yang, Adv. Mater. 22, 380 (2010).
http://dx.doi.org/10.1002/adma.200901624
12.
12. J. J. Zhu, Z. Q. Xu, G. Q. Fan, S. T. Lee, Y. Q. Li, and J. X. Tang, Org. Electron. 12, 2151 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.09.007
13.
13. T. Kuwabara, Y. Kawahara, T. Yamaguchi, and K. Takahashi, Appl. Mater. Interfaces 1, 2107 (2009).
http://dx.doi.org/10.1021/am900446x
14.
14. J. Gilot, I. Barbu, M. M. Wienk, and R. A. J. Janssen, Appl. Phys. Lett. 91, 113520 (2007).
http://dx.doi.org/10.1063/1.2784961
15.
15. S. K. Hau, H. L. Yip, and A. K. Jen, Polym. Rev. 50, 474 (2010).
http://dx.doi.org/10.1080/15583724.2010.515764
16.
16. G. Li, C. W. Chu, V. Shrotriya, J. Huang, and Y. Yang, Appl. Phys. Lett. 88, 253503 (2006).
http://dx.doi.org/10.1063/1.2212270
17.
17. C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, and C. J. Brabec, Appl. Phys. Lett. 89, 233517 (2006).
http://dx.doi.org/10.1063/1.2402890
18.
18. M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, Appl. Phys. Lett. 89, 143517 (2006).
http://dx.doi.org/10.1063/1.2359579
19.
19. Y. H. Zhou, H. Cheun, W. J. Potscavage, C. Fuentes-Hernandez, S. J. Kim, and B. Kippelen, J. Mater. Chem. 20, 6189 (2010).
http://dx.doi.org/10.1039/c0jm00662a
20.
20. Z. Q. Xu, J. P. Yang, F. Z. Sun, S. T. Lee, Y. Q. Li, and J. X. Tang, Org. Electron. 13, 697 (2012).
http://dx.doi.org/10.1016/j.orgel.2012.01.009
21.
21. Z. C. He, C. M. Zhong, S. J. Su, M. Xu, H. B. Wu, and Y. Cao, Nat. Photonics 6, 591 (2012).
http://dx.doi.org/10.1038/nphoton.2012.190
22.
22. Z. A. Tan, W. Q. Zhang, Z. G. Zhang, D. P. Qian, Y. Huang, J. H. Hou, and Y. F. Li, Adv. Mater. 24, 1476 (2012).
http://dx.doi.org/10.1002/adma.201104863
23.
23. S. I. Na, T. S. Kim, S. H. Oh, J. Kim, S. S. Kim, and D. Y. Kim, Appl. Phys. Lett. 97, 223305 (2010).
http://dx.doi.org/10.1063/1.3522893
24.
24. Y. H. Zhou, F. H. Li, S. Barrau, W. J. Tian, O. Inganas, and F. L. Zhang, Sol. Energy Mater. Sol. Cells 93, 497 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.11.002
25.
25. Y. Q. Li, M. K. Fung, Z. Y. Xie, S. T. Lee, L. S. Hung, and J. M. Shi, Adv. Mater. 14, 1317 (2002).
http://dx.doi.org/10.1002/1521-4095(20020916)14:18<1317::AID-ADMA1317>3.0.CO;2-S
26.
26. J. P. Yang, Y. Xiao, Y. H. Deng, S. Duhm, N. Ueno, S. T. Lee, Y. Q. Li, and J. X. Tang, Adv. Funct. Mater. 22, 600 (2012).
http://dx.doi.org/10.1002/adfm.201102136
27.
27. X. Bulliard, S. G. Ihn, S. Yun, Y. Kim, D. Choi, J. Y. Choi, M. Kim, M. Sim, J. H. Park, W. Choi, and K. Cho, Adv. Funct. Mater. 20, 4381 (2010).
http://dx.doi.org/10.1002/adfm.201000960
28.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/13/10.1063/1.4799833
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) J–V characteristics of inverted PSCs integrated with various thickness TPBi EEL under 100 mW/cm2 illumination. Inset: structure schematic of inverted PSCs. (b) The corresponding IPCE spectra. Inset: chemical structure of TPBi molecule. The reference device with a structure of ITO/PEDOT:PSS/P3HT:PCBM/LiF/Al is also shown for comparison.

Image of FIG. 2.

Click to view

FIG. 2.

2 μm × 2 μm AFM images of (a) evaporated TPBi and (b) solution processed TPBi films on ITO substrate. Surface morphologies of spin-coated P3HT:PCBM films on (c) evaporated TPBi and (d) solution processed TPBi.

Image of FIG. 3.

Click to view

FIG. 3.

Energy level diagrams of EEL/P3HT:PCBM active layer in inverted PSCs with TPBi prepared by thermal evaporation and solution processing.

Tables

Generic image for table

Click to view

Table I.

Photovoltaic characteristics of inverted PSCs with a configuration of ITO/TPBi/P3HT:PCBM/MoO3/Al. The reference device with a structure of ITO/PEDOT:PSS/P3HT:PCBM/LiF/Al is also shown for comparison.

Loading

Article metrics loading...

/content/aip/journal/apl/102/13/10.1063/1.4799833
2013-04-05
2014-04-24

Abstract

Efficient inverted polymer solar cell is reported upon by integrating with a small molecular 1,3,5-tri(phenyl-2-benzimi-dazolyl)-benzene (TPBi) electron extraction layer (EEL) at low processing temperature with thermal-evaporation and solution-process, resulting in the power conversion efficiencies of 3.70% and 3.47%, respectively. The potential of TPBi as an efficient EEL is associated with its suitable electronic energy level for electron extraction and hole blocking from the active layer to the indium tin oxide cathode.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/13/1.4799833.html;jsessionid=83romfar3hpm.x-aip-live-01?itemId=/content/aip/journal/apl/102/13/10.1063/1.4799833&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Efficient inverted polymer solar cells with thermal-evaporated and solution-processed small molecular electron extraction layer
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/13/10.1063/1.4799833
10.1063/1.4799833
SEARCH_EXPAND_ITEM