1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/14/10.1063/1.4801861
1.
1. G. L. Frey, S. Elani, M. Homyonfer, Y. Feldman, and R. Tenne, Phys. Rev. B 57(11 ), 6666 (1998);
http://dx.doi.org/10.1103/PhysRevB.57.6666
1. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105(13 ), 136805 (2010);
http://dx.doi.org/10.1103/PhysRevLett.105.136805
1. T. Cao, G. Wang, W. P. Han, H. Q. Ye, C. R. Zhu, J. R. Shi, Q. Niu, P. H. Tan, E. Wang, B. L. Liu, and J. Feng, Nat. Commun. 3, 887 (2012).
http://dx.doi.org/10.1038/ncomms1882
2.
2. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6(3 ), 147 (2011).
http://dx.doi.org/10.1038/nnano.2010.279
3.
3. H. Wang, L. L. Yu, Y. H. Lee, Y. M. Shi, A. Hsu, M. L. Chin, L. J. Li, M. Dubey, J. Kong, and T. Palacios, Nano Lett. 12(9 ), 4674 (2012).
http://dx.doi.org/10.1021/nl302015v
4.
4. R. Fivaz and E. Mooser, Phys. Rev. 163(3 ), 743 (1967).
http://dx.doi.org/10.1103/PhysRev.163.743
5.
5. K. Kaasbjerg, K. S. Thygesen, and K. W. Jacobsen, Phys. Rev. B 85(11 ), 115317 (2012).
http://dx.doi.org/10.1103/PhysRevB.85.115317
6.
6. W. Bao, X. Cai, D. Kim, K. Sridhara, and M. S. Fuhrer, Appl. Phys. Lett. 102, 042104 (2013).
http://dx.doi.org/10.1063/1.4789365
7.
7. Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, and T. W. Lin, Adv. Mater. 24(17 ), 2320 (2012).
http://dx.doi.org/10.1002/adma.201104798
8.
8. Y. J. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, Small 8(7 ), 966 (2012).
http://dx.doi.org/10.1002/smll.201102654
9.
9. Y. C. Lin, W. J. Zhang, J. K. Huang, K. K. Liu, Y. H. Lee, C. T. Liang, C. W. Chu, and L. J. Li, Nanoscale 4(20 ), 6637 (2012).
http://dx.doi.org/10.1039/c2nr31833d
10.
10. K. K. Liu, W. J. Zhang, Y. H. Lee, Y. C. Lin, M. T. Chang, C. Su, C. S. Chang, H. Li, Y. M. Shi, H. Zhang, C. S. Lai, and L. J. Li, Nano Lett. 12(3 ), 1538 (2012).
http://dx.doi.org/10.1021/nl2043612
11.
11. Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, Appl. Phys. Lett. 93(11 ), 113103 (2008);
http://dx.doi.org/10.1063/1.2982585
11. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, Nano Lett. 9(1 ), 30 (2009);
http://dx.doi.org/10.1021/nl801827v
11. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, Nature (London) 457(7230 ), 706 (2009);
http://dx.doi.org/10.1038/nature07719
11. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324(5932 ), 1312 (2009).
http://dx.doi.org/10.1126/science.1171245
12.
12. L. Song, L. J. Ci, H. Lu, P. B. Sorokin, C. H. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, Nano Lett. 10(8 ), 3209 (2010).
http://dx.doi.org/10.1021/nl1022139
13.
13. L. Ci, L. Song, C. H. Jin, D. Jariwala, D. X. Wu, Y. J. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, Nat. Mater. 9(5 ), 430 (2010).
http://dx.doi.org/10.1038/nmat2711
14.
14. S. Kim, A. Konar, W. S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, Nat. Commun. 3, 1011 (2012).
http://dx.doi.org/10.1038/ncomms2018
15.
15. Q. Yu, L. A. Jauregui, W. Wu, R. Colby, J. Tian, Z. Su, H. Cao, Z. Liu, D. Pandey, D. Wei, T. F. Chung, P. Peng, N. P. Guisinger, E. A. Stach, J. Bao, S. S. Pei, and Y. P. Chen, Nat. Mater. 10(6 ), 443 (2011);
http://dx.doi.org/10.1038/nmat3010
15. W. Wu, L. A. Jauregui, Z. Su, Z. Liu, J. Bao, Y. P. Chen, and Q. Yu, Adv. Mater. 23(42 ), 4898 (2011).
http://dx.doi.org/10.1002/adma.201102456
16.
16. T. J. Wieting and J. L. Verble, Phys. Rev. B 3(12 ), 4286 (1971);
http://dx.doi.org/10.1103/PhysRevB.3.4286
16. S. J. Sandoval, D. Yang, R. F. Frindt, and J. C. Irwin, Phys. Rev. B 44(8 ), 3955 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.3955
17.
17. C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, ACS Nano 4(5 ), 2695 (2010).
http://dx.doi.org/10.1021/nn1003937
18.
18. A. Splendiani, L. Sun, Y. B. Zhang, T. S. Li, J. Kim, C. Y. Chim, G. Galli, and F. Wang, Nano Lett. 10(4 ), 1271 (2010).
http://dx.doi.org/10.1021/nl903868w
19.
19. D. De, J. Manongdo, S. See, V. Zhang, A. Guloy, and H. B. Peng, Nanotechnology 24(2 ), 025202 (2013).
http://dx.doi.org/10.1088/0957-4484/24/2/025202
20.
20. A. Ayari, E. Cobas, O. Ogundadegbe, and M. S. Fuhrer, J. Appl. Phys. 101(1 ), 014507 (2007).
http://dx.doi.org/10.1063/1.2407388
21.
21. H. Qiu, L. Pan, Z. Yao, J. Li, Y. Shi, and X. Wang, Appl. Phys. Lett. 100(12 ), 123104 (2012);
http://dx.doi.org/10.1063/1.3696045
21. H. Liu and P. D. D. Ye, IEEE Electron Device Lett. 33(4 ), 546 (2012).
http://dx.doi.org/10.1109/LED.2012.2184520
22.
22. A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G.-H. Le, T. F. Hein, D. R. Reichman, D. A. Mulle, and J. C. Hone, e-print arXiv:1301.1985 [cond-mat.mtrl-sci].
23.
23. W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, Phys. Rev. B 80(23 ), 235402 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.235402
24.
24. T. Kamiya, K. Nomura, and H. Hosono, Sci. Technol. Adv. Mater. 11(4 ), 044305 (2010).
http://dx.doi.org/10.1088/1468-6996/11/4/044305
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/14/10.1063/1.4801861
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Raman spectra of typical single-layer and bilayer MoS2 crystals. E2g 1 at 385 cm−1 and A1g at 407 cm−1 for bilayer; E2g 1 at 386 cm−1 and A1g at404 cm−1 for single layer. (b) Photoluminescence spectrum of a typical bilayer MoS2 crystal. The laser excitation wavelength is 532 nm.

Image of FIG. 2.

Click to view

FIG. 2.

Raman intensity mappings of (a) E2g 1 and (b) A1g of a typical bilayer MoS2 grain.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Optical image of the device. The gap between the two electrodes acrossing the MoS2 grain is 1 μm, and the width of the channel is 3.6 μm. (b) Drain-source current IDS as a function of back-gate voltage VG at fixed drain-source bias voltage VDS = +500 mV (open circles). (Red line) Linear-fit of the data within the back-gate voltage range from VG = +80 V to VG = +100 V. From the linear fit data, the carrier mobility is calculated to be μ = 17.3 cm2 V−1 s−1. (c) Drain-source current IDS plotted in logarithmic scale as a function of back-gate voltage VG at fixeddrain-source bias voltage VDS= +500 mV. The optimized current pre-amplifier gain used in the measurement: 100 pA/V for VG = −100 V to −90 V, 10 nA/V for VG = −89 V to −80 V, 500 nA/V for VG = −79 V to −40 V, and 10 μA/V for VG = −40 V to +100 V. (d) Drain-source current IDS as a function of back-gate voltage VG at drain-source bias voltages VDS = +500 mV, =+400 mV, =+300 mV, =+200 mV, and =+100 mV.

Loading

Article metrics loading...

/content/aip/journal/apl/102/14/10.1063/1.4801861
2013-04-11
2014-04-21

Abstract

We report the electrical characteristics of field-effect transistors (FETs) with single-crystal molybdenum disulfide (MoS2) channels synthesized by chemical vapor deposition (CVD). For a bilayer MoS2 FET, the field-effect mobility is ∼17 cm2 V−1 s−1 and the on/off current ratio is ∼108, which are much higher than those of FETs based on CVD polycrystalline MoS2 films. By avoiding the detrimental effects of the grain boundaries and the contamination introduced by the transfer process, the quality of the CVD MoS2 atomic layers deposited directly on SiO2 is comparable to or better than the exfoliated MoS2 flakes. The result shows that CVD is a viable method to synthesize high quality MoS2 atomic layers.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/14/1.4801861.html;jsessionid=1lhhpgg4ammeq.x-aip-live-01?itemId=/content/aip/journal/apl/102/14/10.1063/1.4801861&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/14/10.1063/1.4801861
10.1063/1.4801861
SEARCH_EXPAND_ITEM