1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Self-assembled monolayer as an interfacial modification material for highly efficient and air-stable inverted organic solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/14/10.1063/1.4802086
1.
1. Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Mater. 22, E135 (2010).
http://dx.doi.org/10.1002/adma.200903528
2.
2. S. C. Price, A. C. Stuart, L. Yang, H. Zhou, and W. You, J. Am. Chem. Soc. 133, 4625 (2011).
http://dx.doi.org/10.1021/ja1112595
3.
3. H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu, and W. You, Angew. Chem. 123, 3051 (2011).
http://dx.doi.org/10.1002/ange.201005451
4.
4. T. Y. Chu, J. Lu, S. Beaupre, Y. Zhang, J.-R. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding, and Y. Tao, J. Am. Chem. Soc. 133, 4250 (2011).
http://dx.doi.org/10.1021/ja200314m
5.
5. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nature Photon. 6, 593 (2012).
http://dx.doi.org/10.1038/nphoton.2012.190
6.
6. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, and Y. Yang, Nat. Commun. 4, 1446 (2013).
http://dx.doi.org/10.1038/ncomms2411
7.
7. M. Jorgensen, K. Norrman, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 92, 686 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.01.005
8.
8. A. Rivaton, S. Chambon, M. Manceau, J. L. Gardette, N. Lamaitre, and S. Guillerez, Polym. Degrad. Stab. 95, 278 (2010).
http://dx.doi.org/10.1016/j.polymdegradstab.2009.11.021
9.
9. K. Norrman, N. B. Larsen, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 90, 2793 (2006).
http://dx.doi.org/10.1016/j.solmat.2006.04.009
10.
10. M. Jorgensen, K. Norrman, S. A. Gevorgyan, T. Tromholt, B. Andreasen, and F. C. Krebs, Adv. Mater. 24, 580 (2012).
http://dx.doi.org/10.1002/adma.201104187
11.
11. J. B. Kim, C. S. Kim, Y. S. Kim, and Y. L. Loo, Appl. Phys. Lett. 95, 183301 (2009).
http://dx.doi.org/10.1063/1.3257361
12.
12. C. S. Kim, S. Lee, L. L. Tinker, S. Bernhard, and Y. L. Loo, Chem. Mater. 21, 4583 (2009).
http://dx.doi.org/10.1021/cm901579h
13.
13. J. W. Shim, H. Cheun, J. Meyer, C. F. Hernandez, A. Dindar, Y. H. Zhou, D. K. Hwang, A. Kahn, and B. Kippelen, Appl. Phys. Lett. 101, 073303 (2012).
http://dx.doi.org/10.1063/1.4745772
14.
14. Y. J. Kang, K. Lim, S. Jung, D. G. Kim, J. K. Kim, C. S. Kim, S. H. Kim, and J. W. Kang, Sol. Energy Mater. Sol. Cells 96, 137 (2012).
http://dx.doi.org/10.1016/j.solmat.2011.09.045
15.
15. Y. Sun, J. Seo, C. Takacs, J. Seifter, and A. Heeger, Adv. Mater. 23, 1679 (2011).
http://dx.doi.org/10.1002/adma.201004301
16.
16. C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, and C. J. Brabec, Appl. Phys. Lett. 89, 233517 (2006).
http://dx.doi.org/10.1063/1.2402890
17.
17. H. Sun, J. Weickert, H. C. Hesse, and L. S. Mende, Sol. Energy Mater. Sol. Cells 95, 3450 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.08.004
18.
18. Y. Zhou, H. Cheun, W. J. Potscavage, C. F. Hernandez, S. J. Kim, and B. Kipplelen, J. Mater. Chem. 20, 6189, (2010).
http://dx.doi.org/10.1039/c0jm00662a
19.
19. G. Li, C. W. Chu, V. Shrotriya, J. Huang, and Y. Yang, Appl. Phys. Lett. 88, 253503 (2006).
http://dx.doi.org/10.1063/1.2212270
20.
20. H. H. Liao, L. M. Chen, Z. Xu, G. Li, and Y. Yang, Appl. Phys. Lett. 92, 173303 (2008).
http://dx.doi.org/10.1063/1.2918983
21.
21. A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, and D. L. Kwong, Appl. Phys. Lett. 93, 221107 (2008).
http://dx.doi.org/10.1063/1.3039076
22.
22. C. H. Hsieh, Y. J. Cheng, P. J. Li, C. H. Chen, M. Dubosc, R. M. Liang, and C. S. Hsu, J. Am. Chem. Soc. 132, 4887 (2010).
http://dx.doi.org/10.1021/ja100236b
23.
23. S. K. Hau, H. L. Yip, N. S. Baek, J. Zou, K. O'Mellay, and A. K. Y. Jen, Appl. Phys. Lett. 92, 253301 (2008).
http://dx.doi.org/10.1063/1.2945281
24.
24. F. Krebs, T. Tromholt, and M. Jorgensen, Nanoscale 2, 873 (2010).
http://dx.doi.org/10.1039/b9nr00430k
25.
25. H. Schmidt, K. Zilberberg, S. Schmale, H. Flugge, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 96, 243305 (2010).
http://dx.doi.org/10.1063/1.3455108
26.
26. C. S. Kim, S. Lee, E. Gomez, J. B. Kim, and Y. L. Loo, Appl. Phys. Lett. 94, 113302 (2009).
http://dx.doi.org/10.1063/1.3099947
27.
27. H. Kang, S. Hong, J. Lee, and K. Lee, Adv. Mater. 24, 3005 (2012).
http://dx.doi.org/10.1002/adma.201200594
28.
28. S. G. J. Mathijssen, P. A. Hal, T. J. M. Biggelaar, E. C. P. Smits, B. Boer, M. Kemerink, R. A. J. Janssen, and D. M. Leeuw, Adv. Mater. 20, 2703 (2008).
http://dx.doi.org/10.1002/adma.200800299
29.
29. T. H. Park, Y. M. Kim, Y. W. Park, J. H. Choi, J. W. Jeong, K. C. Choi, and B. K. Ju, Appl. Phys. Lett. 95, 113310 (2009).
http://dx.doi.org/10.1063/1.3222977
30.
30. S. A. BiBenedetto, A. Facchetti, M. A. Ratner, and T. J. Marks, Adv. Mater. 21, 1407 (2009).
http://dx.doi.org/10.1002/adma.200803267
31.
31. M. Halik, H. Klauk, U. Zschieschang, G. Schmid, C. Dehm, M. Schütz, S. Maisch, F. Effenberger, M. Brunnbauer, and F. Stellacci, Nature 431, 963 (2004).
http://dx.doi.org/10.1038/nature02987
32.
32. H. L. Yip, S. K. Hau, N. S. Baek, H. Ma, and A. K. Y. Jen, Adv. Mater. 20, 2376 (2008).
http://dx.doi.org/10.1002/adma.200703050
33.
33. H. L. Yip and A. K. Y. Jen, Energy Environ. Sci. 5, 5994 (2012).
http://dx.doi.org/10.1039/c2ee02806a
34.
34. T. H. Tran, J. W. Lee, K. Lee, Y. D. Lee, and B. K. Ju, Sens. Actuators B 129, 67 (2008).
http://dx.doi.org/10.1016/j.snb.2007.07.104
35.
35. M. Vosgueritchian, M. C. LeMieux, D. Dodge, and Z. Bao, ACS Nano 4, 6137 (2010).
http://dx.doi.org/10.1021/nn1012226
36.
36. J. Hou, H. Y. Chen, S. Zhang, R. I. Chen, Y. Yang, Y. Wu, and G. Li, J. Am. Chem. Soc. 131, 15586 (2009).
http://dx.doi.org/10.1021/ja9064975
37.
37. H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, and G. Li, Nature Photon. 3, 649 (2009).
http://dx.doi.org/10.1038/nphoton.2009.192
38.
38. Y. Zhou, C. F. Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, Science 336, 327 (2012).
http://dx.doi.org/10.1126/science.1218829
39.
39. F. J. Feher, D. A. Newman, and J. F. Walzer, J. Am. Chem. Soc. 111, 1741 (1989).
http://dx.doi.org/10.1021/ja00187a028
40.
40. L. Valentini, S. B. Bon, O. Monticellib, and J. M. Kennya, J. Mater. Chem. 22, 6213 (2012).
http://dx.doi.org/10.1039/c2jm16111g
41.
41. V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, J. Appl. Phys. 94, 6849 (2003).
http://dx.doi.org/10.1063/1.1620683
42.
42. P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, Adv. Mater. 19, 1551 (2007).
http://dx.doi.org/10.1002/adma.200601093
43.
43. J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, Appl. Phys. Lett. 84, 3013 (2004).
http://dx.doi.org/10.1063/1.1713036
44.
44. N. Li, B. E. Lassiter, R. R. Lunt, G. D. Wei, and S. R. Forrest, Appl. Phys. Lett. 94, 023307 (2009).
http://dx.doi.org/10.1063/1.3072807
45.
45. C. Duan, C. Zhong, C. Liu, F. Huang, and Y. Cao, Chem. Mater. 24, 1682 (2012).
http://dx.doi.org/10.1021/cm300824h
46.
46. J. H. Seo, D. H. Kim, S. H. Kwon, Y. C. Park, H. H. Jung, H. W. Lee, J. D. Kwon, S. G. Park, K. S. Nam, Y. Jeong, S. Y. Ryu, J. W. Kang, and C. S. Kim, Phys. Chem. Chem. Phys. 15, 1788 (2013).
http://dx.doi.org/10.1039/c2cp44468b
47.
47. M. O. Reese, S. A. Gevorgyan, M. Jørgensen, E. Bundgaard, S. R. Kurtz, D. S. Ginley, D. C. Olson, M. T. Lloyd, P. Morvillo, E. A. Katz et al., Sol. Energy Mat. Sol. Cells 95, 1253 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.01.036
48.
48. J. Cuiffi, T. Benanti, W. J. Nam, and S. Fonash, Appl. Phys. Lett. 96, 143307 (2010).
http://dx.doi.org/10.1063/1.3383232
49.
49. F. C. Krebs and K. Norrman, Prog. Photovolt. 15, 697 (2007).
http://dx.doi.org/10.1002/pip.794
50.
50. M. C. Chen, Y. S. Chiou, J. M. Chiu, and A. Tedla, and Y. Tai, J. Mater. Chem. A 1, 3680 (2013).
http://dx.doi.org/10.1039/c3ta01229h
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/14/10.1063/1.4802086
Loading
/content/aip/journal/apl/102/14/10.1063/1.4802086
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/14/10.1063/1.4802086
2013-04-12
2014-10-24

Abstract

Organic solar cells with inverted structures can greatly improve photovoltaic stability. This paper reports a method to lower the work function of indium tin oxide (ITO) in inverted organic solar cells by modification with ultrathin 3-aminopropyltriethoxysilane (APTES) monolayers. The device studies showed that the resulting photovoltaic efficiencies were significantly increased from 0.64% to 4.83% with the use of the APTES monolayer, which could be attributed to the dramatic enhancement in the open-circuit voltage and fill factor. The effective electron selectivity in the case of the APTES-modified ITO could be attributed to the reduction of the work function of ITO as a result of the electron-donating nature of the amine groups in the APTES monolayer. The power conversion efficiency of the unencapsulated inverted organic solar cells with APTES-modified ITO remained above 80% of their original values even after storage in air for thirty days. Our results provide a promising approach to improve the performance of highly efficient and air-stable inverted organic solar cells.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/14/1.4802086.html;jsessionid=a7cqt0t3hibpo.x-aip-live-06?itemId=/content/aip/journal/apl/102/14/10.1063/1.4802086&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Self-assembled monolayer as an interfacial modification material for highly efficient and air-stable inverted organic solar cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/14/10.1063/1.4802086
10.1063/1.4802086
SEARCH_EXPAND_ITEM