NOTICE: Scitation Maintenance Sunday, March 1, 2015.

Scitation users may experience brief connectivity issues on Sunday, March 1, 2015 between 12:00 AM and 7:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Mater. 22, E135 (2010).
2. S. C. Price, A. C. Stuart, L. Yang, H. Zhou, and W. You, J. Am. Chem. Soc. 133, 4625 (2011).
3. H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu, and W. You, Angew. Chem. 123, 3051 (2011).
4. T. Y. Chu, J. Lu, S. Beaupre, Y. Zhang, J.-R. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding, and Y. Tao, J. Am. Chem. Soc. 133, 4250 (2011).
5. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nature Photon. 6, 593 (2012).
6. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, and Y. Yang, Nat. Commun. 4, 1446 (2013).
7. M. Jorgensen, K. Norrman, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 92, 686 (2008).
8. A. Rivaton, S. Chambon, M. Manceau, J. L. Gardette, N. Lamaitre, and S. Guillerez, Polym. Degrad. Stab. 95, 278 (2010).
9. K. Norrman, N. B. Larsen, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 90, 2793 (2006).
10. M. Jorgensen, K. Norrman, S. A. Gevorgyan, T. Tromholt, B. Andreasen, and F. C. Krebs, Adv. Mater. 24, 580 (2012).
11. J. B. Kim, C. S. Kim, Y. S. Kim, and Y. L. Loo, Appl. Phys. Lett. 95, 183301 (2009).
12. C. S. Kim, S. Lee, L. L. Tinker, S. Bernhard, and Y. L. Loo, Chem. Mater. 21, 4583 (2009).
13. J. W. Shim, H. Cheun, J. Meyer, C. F. Hernandez, A. Dindar, Y. H. Zhou, D. K. Hwang, A. Kahn, and B. Kippelen, Appl. Phys. Lett. 101, 073303 (2012).
14. Y. J. Kang, K. Lim, S. Jung, D. G. Kim, J. K. Kim, C. S. Kim, S. H. Kim, and J. W. Kang, Sol. Energy Mater. Sol. Cells 96, 137 (2012).
15. Y. Sun, J. Seo, C. Takacs, J. Seifter, and A. Heeger, Adv. Mater. 23, 1679 (2011).
16. C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, and C. J. Brabec, Appl. Phys. Lett. 89, 233517 (2006).
17. H. Sun, J. Weickert, H. C. Hesse, and L. S. Mende, Sol. Energy Mater. Sol. Cells 95, 3450 (2011).
18. Y. Zhou, H. Cheun, W. J. Potscavage, C. F. Hernandez, S. J. Kim, and B. Kipplelen, J. Mater. Chem. 20, 6189, (2010).
19. G. Li, C. W. Chu, V. Shrotriya, J. Huang, and Y. Yang, Appl. Phys. Lett. 88, 253503 (2006).
20. H. H. Liao, L. M. Chen, Z. Xu, G. Li, and Y. Yang, Appl. Phys. Lett. 92, 173303 (2008).
21. A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, and D. L. Kwong, Appl. Phys. Lett. 93, 221107 (2008).
22. C. H. Hsieh, Y. J. Cheng, P. J. Li, C. H. Chen, M. Dubosc, R. M. Liang, and C. S. Hsu, J. Am. Chem. Soc. 132, 4887 (2010).
23. S. K. Hau, H. L. Yip, N. S. Baek, J. Zou, K. O'Mellay, and A. K. Y. Jen, Appl. Phys. Lett. 92, 253301 (2008).
24. F. Krebs, T. Tromholt, and M. Jorgensen, Nanoscale 2, 873 (2010).
25. H. Schmidt, K. Zilberberg, S. Schmale, H. Flugge, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 96, 243305 (2010).
26. C. S. Kim, S. Lee, E. Gomez, J. B. Kim, and Y. L. Loo, Appl. Phys. Lett. 94, 113302 (2009).
27. H. Kang, S. Hong, J. Lee, and K. Lee, Adv. Mater. 24, 3005 (2012).
28. S. G. J. Mathijssen, P. A. Hal, T. J. M. Biggelaar, E. C. P. Smits, B. Boer, M. Kemerink, R. A. J. Janssen, and D. M. Leeuw, Adv. Mater. 20, 2703 (2008).
29. T. H. Park, Y. M. Kim, Y. W. Park, J. H. Choi, J. W. Jeong, K. C. Choi, and B. K. Ju, Appl. Phys. Lett. 95, 113310 (2009).
30. S. A. BiBenedetto, A. Facchetti, M. A. Ratner, and T. J. Marks, Adv. Mater. 21, 1407 (2009).
31. M. Halik, H. Klauk, U. Zschieschang, G. Schmid, C. Dehm, M. Schütz, S. Maisch, F. Effenberger, M. Brunnbauer, and F. Stellacci, Nature 431, 963 (2004).
32. H. L. Yip, S. K. Hau, N. S. Baek, H. Ma, and A. K. Y. Jen, Adv. Mater. 20, 2376 (2008).
33. H. L. Yip and A. K. Y. Jen, Energy Environ. Sci. 5, 5994 (2012).
34. T. H. Tran, J. W. Lee, K. Lee, Y. D. Lee, and B. K. Ju, Sens. Actuators B 129, 67 (2008).
35. M. Vosgueritchian, M. C. LeMieux, D. Dodge, and Z. Bao, ACS Nano 4, 6137 (2010).
36. J. Hou, H. Y. Chen, S. Zhang, R. I. Chen, Y. Yang, Y. Wu, and G. Li, J. Am. Chem. Soc. 131, 15586 (2009).
37. H. Y. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang, L. P. Yu, Y. Wu, and G. Li, Nature Photon. 3, 649 (2009).
38. Y. Zhou, C. F. Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J. L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, Science 336, 327 (2012).
39. F. J. Feher, D. A. Newman, and J. F. Walzer, J. Am. Chem. Soc. 111, 1741 (1989).
40. L. Valentini, S. B. Bon, O. Monticellib, and J. M. Kennya, J. Mater. Chem. 22, 6213 (2012).
41. V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, J. Appl. Phys. 94, 6849 (2003).
42. P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, Adv. Mater. 19, 1551 (2007).
43. J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, Appl. Phys. Lett. 84, 3013 (2004).
44. N. Li, B. E. Lassiter, R. R. Lunt, G. D. Wei, and S. R. Forrest, Appl. Phys. Lett. 94, 023307 (2009).
45. C. Duan, C. Zhong, C. Liu, F. Huang, and Y. Cao, Chem. Mater. 24, 1682 (2012).
46. J. H. Seo, D. H. Kim, S. H. Kwon, Y. C. Park, H. H. Jung, H. W. Lee, J. D. Kwon, S. G. Park, K. S. Nam, Y. Jeong, S. Y. Ryu, J. W. Kang, and C. S. Kim, Phys. Chem. Chem. Phys. 15, 1788 (2013).
47. M. O. Reese, S. A. Gevorgyan, M. Jørgensen, E. Bundgaard, S. R. Kurtz, D. S. Ginley, D. C. Olson, M. T. Lloyd, P. Morvillo, E. A. Katz et al., Sol. Energy Mat. Sol. Cells 95, 1253 (2011).
48. J. Cuiffi, T. Benanti, W. J. Nam, and S. Fonash, Appl. Phys. Lett. 96, 143307 (2010).
49. F. C. Krebs and K. Norrman, Prog. Photovolt. 15, 697 (2007).
50. M. C. Chen, Y. S. Chiou, J. M. Chiu, and A. Tedla, and Y. Tai, J. Mater. Chem. A 1, 3680 (2013).

Data & Media loading...


Article metrics loading...



Organic solar cells with inverted structures can greatly improve photovoltaic stability. This paper reports a method to lower the work function of indium tin oxide (ITO) in inverted organic solar cells by modification with ultrathin 3-aminopropyltriethoxysilane (APTES) monolayers. The device studies showed that the resulting photovoltaic efficiencies were significantly increased from 0.64% to 4.83% with the use of the APTES monolayer, which could be attributed to the dramatic enhancement in the open-circuit voltage and fill factor. The effective electron selectivity in the case of the APTES-modified ITO could be attributed to the reduction of the work function of ITO as a result of the electron-donating nature of the amine groups in the APTES monolayer. The power conversion efficiency of the unencapsulated inverted organic solar cells with APTES-modified ITO remained above 80% of their original values even after storage in air for thirty days. Our results provide a promising approach to improve the performance of highly efficient and air-stable inverted organic solar cells.


Full text loading...

This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Self-assembled monolayer as an interfacial modification material for highly efficient and air-stable inverted organic solar cells