1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Polarization-independent efficiency enhancement of organic solar cells by using 3-dimensional plasmonic electrode
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/15/10.1063/1.4802261
1.
1. M. Kauranen and A. V. Zayats, Nat. Photonics 6(11 ), 737748 (2012).
http://dx.doi.org/10.1038/nphoton.2012.244
2.
2. G. Li, R. Zhu, and Y. Yang, Nat. Photonics 6(3 ), 153161 (2012).
http://dx.doi.org/10.1038/nphoton.2012.11
3.
3. A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, Nano Lett. 10(4 ), 15011505 (2010).
http://dx.doi.org/10.1021/nl100615e
4.
4. X. H. Li, W. C. H. Choy, L. J. Huo, F. X. Xie, W. E. I. Sha, B. F. Ding, X. Guo, Y. F. Li, J. H. Hou, J. B. You, and Y. Yang, Adv. Mater. 24(22 ), 30463052 (2012).
http://dx.doi.org/10.1002/adma.201200120
5.
5. X. Li, W. C. H. Choy, H. Lu, W. E. I. Sha, and A. H. P. Ho, “ Efficiency Enhancement of Organic Solar Cells by Using Shape-Dependent Broadband Plasmonic Absorption in Metallic Nanoparticles,” Adv. Funct. Mater. (published online).
http://dx.doi.org/10.1002/adfm.201202476
6.
6. D. Madzharov, R. Dewan, and D. Knipp, Opt. Express 19(6 ), A95A107 (2011).
http://dx.doi.org/10.1364/OE.19.000A95
7.
7. K. S. Nalwa, J. M. Park, K. M. Ho, and S. Chaudhary, Adv. Mater. 23(1 ), 112116 (2011).
http://dx.doi.org/10.1002/adma.201002898
8.
8. D. H. Wang, J. Seifter, J. H. Park, D. G. Choi, and A. J. Heeger, Adv. Energy Mater. 2(11 ), 13191322 (2012).
http://dx.doi.org/10.1002/aenm.201200349
9.
9. W. L. Bai, Q. Q. Gan, G. F. Song, L. H. Chen, Z. Kafafi, and F. Bartoli, Opt. Express 18(23 ), A620A630 (2010).
http://dx.doi.org/10.1364/OE.18.00A620
10.
10. E. Lee and C. Kim, Opt. Express 20(19 ), A740A753 (2012).
http://dx.doi.org/10.1364/OE.20.00A740
11.
11. A. Naqavi, K. Soderstrom, F. J. Haug, V. Paeder, T. Scharf, H. P. Herzig, and C. Ballif, Opt. Express 19(1 ), 128140 (2011).
http://dx.doi.org/10.1364/OE.19.000128
12.
12. B. Niesen, B. P. Rand, P. Van Dorpe, D. Cheyns, L. Tong, A. Dmitriev, and P. Heremans, Adv. Energy Mater. 3(2 ), 145150 (2013).
http://dx.doi.org/10.1002/aenm.201200289
13.
13. X. H. Li, W. E. I. Sha, W. C. H. Choy, D. D. S. Fung, and F. X. Xie, J. Phys. Chem. C 116(12 ), 72007206 (2012).
http://dx.doi.org/10.1021/jp211237c
14.
14. J. You, X. Li, F.-x. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, and Y. Yang, Adv. Energy Mater. 2(10 ), 12031207 (2012).
http://dx.doi.org/10.1002/aenm.201200108
15.
15. H. A. Atwater and A. Polman, Nat. Mater. 9(3 ), 205213 (2010).
http://dx.doi.org/10.1038/nmat2629
16.
16. T. Sondergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. H. Han, K. Pedersen, and S. I. Bozhevolnyi, Nat. Commun. 3, 969 (2012).
http://dx.doi.org/10.1038/ncomms1976
17.
17. L. Muller-Meskamp, Y. H. Kim, T. Roch, S. Hofmann, R. Scholz, S. Eckardt, K. Leo, and A. F. Lasagni, Adv. Mater. 24(7 ), 906910 (2012).
http://dx.doi.org/10.1002/adma.201104331
18.
18. A. Baba, N. Aoki, K. Shinbo, K. Kato, and F. Kaneko, ACS Appl. Mater. Interfaces 3(6 ), 20802084 (2011).
http://dx.doi.org/10.1021/am200304x
19.
19. X. Y. Duan, S. Q. Chen, H. F. Yang, H. Cheng, J. J. Li, W. W. Liu, C. Z. Gu, and J. G. Tian, Appl. Phys. Lett. 101(14 ), 143105 (2012).
http://dx.doi.org/10.1063/1.4756944
20.
20. L. Li, Y. Yang, and C. H. Liang, J. Appl. Phys. 110(6 ), 063702 (2011).
http://dx.doi.org/10.1063/1.3638118
21.
21. W. E. I. Sha, W. C. H. Choy, and W. C. Chew, Opt. Lett. 36(4 ), 478480 (2011).
http://dx.doi.org/10.1364/OL.36.000478
22.
22. H. X. Xu, G. M. Wang, M. Q. Qi, J. G. Liang, J. Q. Gong, and Z. M. Xu, Phys. Rev. B 86(20 ), 205104 (2012).
http://dx.doi.org/10.1103/PhysRevB.86.205104
23.
23. Y. Liu, R. Dhakal, V. Dalal, and J. Kim, Appl. Phys. Lett. 101(23 ), 233904 (2012).
http://dx.doi.org/10.1063/1.4769896
24.
24. C. M. Hsu, C. Battaglia, C. Pahud, Z. C. Ruan, F. J. Haug, S. H. Fan, C. Ballif, and Y. Cui, Adv. Energy Mater. 2(6 ), 628633 (2012).
http://dx.doi.org/10.1002/aenm.201100514
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/15/10.1063/1.4802261
Loading
/content/aip/journal/apl/102/15/10.1063/1.4802261
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/15/10.1063/1.4802261
2013-04-17
2014-12-20

Abstract

Plasmonic back reflectors have recently become a promising strategy for realizing efficient organic solar cell (OSCs). Since plasmonic effects are strongly sensitive to light polarization, it is highly desirable to simultaneously achieve polarization-independent response and enhanced power conversion efficiency (PCE) by designing the nanostructured geometry of plasmonic reflector electrode. Here, through a strategic analysis of 2-dimensional grating (2D) and 3-dimensional patterns (3D), with similar periodicity as a plasmonic back reflector, we find that the OSCs with 3D pattern achieve the best PCE enhancement by 24.6%, while the OSCs with 2D pattern can offer 17.5% PCE enhancement compared to the optimized control OSCs. Importantly, compared with the 2D pattern, the 3D pattern shows a polarization independent plasmonic response, which will greatly extend its uses in photovoltaic applications. This work shows the significances of carefully selecting and designing geometry of plasmonic nanostructures in achieving high-efficient, polarization-independent plasmonic OSCs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/15/1.4802261.html;jsessionid=8u0sheujcarsu.x-aip-live-02?itemId=/content/aip/journal/apl/102/15/10.1063/1.4802261&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Polarization-independent efficiency enhancement of organic solar cells by using 3-dimensional plasmonic electrode
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/15/10.1063/1.4802261
10.1063/1.4802261
SEARCH_EXPAND_ITEM