1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Shallow acceptor complexes in p-type ZnO
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/15/10.1063/1.4802753
1.
1. Y. Segawa, H. D. Sun, T. Makino, M. Kawasaki, and H. Koinuma, Phys. Status Solidi A 192, 14 (2002).
http://dx.doi.org/10.1002/1521-396X(200207)192:1<14::AID-PSSA14>3.0.CO;2-A
2.
2. C. H. Chia, T. Makino, K. Tamura, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, Appl. Phys. Lett. 82, 1848 (2003).
http://dx.doi.org/10.1063/1.1561158
3.
3. K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, Jpn. J. Appl. Phys., Part 2 36, L1453 (1997).
http://dx.doi.org/10.1143/JJAP.36.L1453
4.
4. M. Joseph, H. Tabata, and T. Kawai, Jpn. J. Appl. Phys., Part 2 38, L1205 (1999).
http://dx.doi.org/10.1143/JJAP.38.L1205
5.
5. D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).
http://dx.doi.org/10.1063/1.1504875
6.
6. A. Zeuner, H. Alves, D. M. Hofmann, B. K. Meyer, A. Hoffmann, U. Haboeck, M. Strassburg, and M. Dworzak, Phys. Status Solidi B 234, R7 (2002).
http://dx.doi.org/10.1002/1521-3951(200212)234:33.0.CO;2-D
7.
7. K. Tamura, T. Makino, A. Tsukazaki, M. Sumiya, S. Fuke, T. Furumochi, M. Lippmaa, C. H. Chia, Y. Segawa, H. Koinuma, and M. Kawasaki, Solid State Commun. 127, 265 (2003).
http://dx.doi.org/10.1016/S0038-1098(03)00424-1
8.
8. C. H. Park, S. B. Zhang, and S.-H. Wei, Phys. Rev. B 66, 073202 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.073202
9.
9. B. K. Meyer, H. Alves, D. M. Hoffman, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffman, M. Strassburg, M. Dworzak, U. Haboek, and A. V. Rodina, Phys. Status Solidi B 241, 231 (2004).
http://dx.doi.org/10.1002/pssb.200301962
10.
10. L. Wang and N. C. Giles, Appl. Phys. Lett. 84, 3049 (2004).
http://dx.doi.org/10.1063/1.1711162
11.
11. K. Flock, S.-J. Kim, M. Asar, I. K. Kim, and D. E. Aspnes, Thin Solid Films 455, 639 (2004).
http://dx.doi.org/10.1016/j.tsf.2004.01.069
12.
12. A. F. Kohan, G. Ceder, and D. Morgan, Phys. Rev. B 61, 15019 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.15019
13.
13. L. Liu, J. Xu, D. Wang, M. Jiang, S. Wang, B. Li, Z. Zhang, D. Zhao, C.-X. Shan, B. Yao, and D. Z. Shen, Phys. Rev. Lett. 108, 215501 (2012).
http://dx.doi.org/10.1103/PhysRevLett.108.215501
14.
14. A. Kaschner, U. Haboeck, M. Strassburg, G. Kaczmarczyk, A. Hoffmann, C. Thomsen, A. Zeuner, H. Alves, D. M. Hofmann, and B. K. Meyer, Appl. Phys. Lett. 80, 1909 (2002).
http://dx.doi.org/10.1063/1.1461903
15.
15. S. A. French, A. A. Sokol, S. T. Bromley, C. R. A. Catlow, S. C. Roger, and P. Sherwood, J. Chem. Phys. 118, 317 (2003).
http://dx.doi.org/10.1063/1.1523897
16.
16. D. J. Brink and H. W. Kunert, Phys. Status Solidi 229, 859 (2002).
http://dx.doi.org/10.1002/1521-3951(200201)229:2<859::AID-PSSB859>3.0.CO;2-K
17.
17. A. A. Tsyganenko, J. Lamotte, J. Saussey, and J. C. Lavalley, J. Chem. Soc., Faraday Trans. 1 85, 2397 (1989).
http://dx.doi.org/10.1039/f19898502397
18.
18. Z. Jianmin, X. Guigui, W. Qingyun, C. Zhigao, and H. Zhigao, J. Semicond. 31, 062001 (2010).
http://dx.doi.org/10.1088/1674-4926/31/6/062001
19.
19. E. V. Lavrov, J. Weber, and F. Borrnert, C. G. Van de Walle, and R. Helbig, Phys. Rev. B 66, 165205 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.165205
20.
20. S. Limpijumnong, J. E. Northrup, and C. G. Van de Walle, Phys. Rev. B 68, 075206 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.075206
21.
21. K. Senthikumar, M. Tokunaga, H. Okamoto, O. Senthikumar, and Y. Fujita, Appl. Phys. Lett. 97, 091907 (2010).
http://dx.doi.org/10.1063/1.3485049
22.
22. Y. R. Ryu, T. S. Lee, and H. W. White, Appl. Phys. Lett. 83, 87 (2003).
http://dx.doi.org/10.1063/1.1590423
23.
23. D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, Appl. Phys. Lett. 86, 151917 (2005).
http://dx.doi.org/10.1063/1.1895480
24.
24. J. W. Sun, Y. M. Lu, Y. C. Liu, D. Z. Shen, Z. Z. Zhang, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, and X. W. Fan, J. Appl. Phys. 102, 043522 (2007).
http://dx.doi.org/10.1063/1.2772581
25.
25. A. Teke, U. Ozgur, S. Dogan, X. Gu, H. Morkoc, B. Nemeth, J. Nause, and H. O. Everitt, Phys. Rev. B 70, 195207 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.195207
26.
26. P. Misra, T. K. Sharma, and L. M. Kukreja, Curr. Appl. Phys. 9, 179 (2009).
http://dx.doi.org/10.1016/j.cap.2008.01.007
27.
27. M. R. Wagner, G. Callsen, J. S. Reparaz, J.-H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, A. Hoffman, A. V. Rodina, M. R. Phillips, S. Lautenschläger, S. Eisermann, and B. K. Meyer, Phys. Rev. B 84, 035313 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.035313
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/15/10.1063/1.4802753
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

SIMS depth profiles of ZnO, H, and ZnN collected for N-doped ZnO films of (a) n-type sample 130A before (solid lines) and 130B after (dashed lines) an 800 °C, 60 s ex situ anneal in N2 and (b) p-type sample 131C before (solid lines) and 131D after (dashed lines) a 30 s ex situ anneal in N2.

Image of FIG. 2.

Click to view

FIG. 2.

Raman spectra of N-doped ZnO films for selected frequency ranges (a) 1200–1700 cm−1, (b) 3000–3200 cm−1, and (c) 3200–3650 cm−1, for p-type sample 131C before ex situ anneal (i, black); n-type sample 131E after 30 s ex situ 800 °C O2 anneal (ii, red); and n-type sample 144G before (iii, blue); and 144I after (iv, magenta) ex situ O2 anneal.

Image of FIG. 3.

Click to view

FIG. 3.

11.6 K PL spectra of (a) 131C, 131E, and 144G, 144I before and (b) after the ex situ 800 °C O2 anneal.

Tables

Generic image for table

Click to view

Table I.

Summary of process conditions for thin films of ZnO.

Generic image for table

Click to view

Table II.

Summary of Hall effect data for ZnO samples.

Loading

Article metrics loading...

/content/aip/journal/apl/102/15/10.1063/1.4802753
2013-04-19
2014-04-20

Abstract

We show that N-doped ZnO films grown on sapphire can exhibit significant (∼1018 cm−3) room-temperature p-type behavior when sufficient nitrogen (N) is incorporated and the material is annealed appropriately. Substitutional N on the oxygen (O) sublattice is a deep acceptor; however, shallow acceptor complexes involve N, H, and zinc vacancies (V Zn ). Combining secondary ion mass spectrometry, Raman-scattering, photoluminescence, and Hall-effect data, we establish the evolution of N from its initial incorporation on a Zn site to a final shallow acceptor complex V Zn _NO _H+ with an ionization energy of ca. 130 meV. This complex is responsible for the observed p-type behavior.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/15/1.4802753.html;jsessionid=4v4tugt95ngdu.x-aip-live-03?itemId=/content/aip/journal/apl/102/15/10.1063/1.4802753&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Shallow acceptor complexes in p-type ZnO
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/15/10.1063/1.4802753
10.1063/1.4802753
SEARCH_EXPAND_ITEM