1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Influence of donor-acceptor layer sequence on photoresponsive organic field-effect transistors based on palladium phthalocyanine and C60
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/102/16/10.1063/1.4802487
1.
1. M. Muccini, Nat. Mater. 5(8 ), 605613 (2006).
http://dx.doi.org/10.1038/nmat1699
2.
2. B. Mukherjee, M. Mukherjee, Y. Choi, and S. Pyo, ACS Appl. Mater. Interfaces 2(6 ), 16141620 (2010).
http://dx.doi.org/10.1021/am100127q
3.
3. N. Marjanović, T. B. Singh, G. Dennler, S. Günes, H. Neugebauer, N. S. Sariciftci, R. Schwödiauer, and S. Bauer, Org. Electron. 7(4 ), 188194 (2006).
http://dx.doi.org/10.1016/j.orgel.2006.01.002
4.
4. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater. 11(1 ), 1526 (2001).
http://dx.doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
5.
5. M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater. 18(6 ), 789794 (2006).
http://dx.doi.org/10.1002/adma.200501717
6.
6. T. N. Ng, W. S. Wong, M. L. Chabinyc, S. Sambandan, and R. A. Street, Appl. Phys. Lett. 92(21 ), 213303 (2008).
http://dx.doi.org/10.1063/1.2937018
7.
7. B. Yao, W. L. Lv, D. Q. Chen, G. Y. Fan, M. Q. Zhou, and Y. Q. Peng, Appl. Phys. Lett. 101(16 ), 163301 (2012).
http://dx.doi.org/10.1063/1.4756937
8.
8. P. Heremans, D. Cheyns, and B. P. Rand, Acc. Chem. Res. 42(11 ), 17401747 (2009).
http://dx.doi.org/10.1021/ar9000923
9.
9. B. Park, S. Choi, S. Graham, and E. Reichmanis, J. Phys. Chem. C 116(17 ), 93909397 (2012).
http://dx.doi.org/10.1021/jp300708z
10.
10. I. Kim, H. M. Haverinen, J. Li, and G. E. Jabbour, Appl. Phys. Lett. 97(20 ), 203301 (2010).
http://dx.doi.org/10.1063/1.3507387
11.
11. T. Sakurai, T. Ohashi, H. Kitazume, M. Kubota, T. Suemasu, and K. Akimoto, Org. Electron. 12(6 ), 966973 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.03.016
12.
12. F. Pan, H. K. Tian, X. R. Qian, L. Z. Huang, Y. H. Geng, and D. H. Yan, Org. Electron. 12(8 ), 13581363 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.05.003
13.
13. M. Kraus, S. Haug, W. Brütting, and A. Opitz, Org. Electron. 12(5 ), 731735 (2011).
http://dx.doi.org/10.1016/j.orgel.2011.02.001
14.
14. I. Kim, H. M. Haverinen, Z. Wang, S. Madakuni, Y. Kim, J. Li, and G. E. Jabbour, Chem. Mater. 21(18 ), 42564260 (2009).
http://dx.doi.org/10.1021/cm901320p
15.
15. K. Itaka, M. Yamashiro, J. Yamaguchi, M. Haemori, S. Yaginuma, Y. Matsumoto, M. Kondo, and H. Koinuma, Adv. Mater. 18(13 ), 17131716 (2006).
http://dx.doi.org/10.1002/adma.200502752
16.
16. R. J. C. Brown, A. R. Kucernak, N. J. Long, and C. Mongay-Batalla, New J. Chem. 28(6 ), 676680 (2004).
http://dx.doi.org/10.1039/b401880j
17.
17. M. C. Hamilton, S. Martin, and J. Kanicki, IEEE Trans. Electron Devices 51(6 ), 877885 (2004).
http://dx.doi.org/10.1109/TED.2004.829619
18.
18. S. H. Kim, J. Jang, and J. Y. Lee, Appl. Phys. Lett. 89(25 ), 253501 (2006).
http://dx.doi.org/10.1063/1.2410224
19.
19. N. Takahashi, A. Maeda, K. Uno, E. Shikoh, Y. Yamamoto, H. Hori, Y. Kubozono, and A. Fujiwara, Appl. Phys. Lett. 90(8 ), 083503 (2007).
http://dx.doi.org/10.1063/1.2709523
20.
20. C. Shen and A. Kahn, J. Appl. Phys. 90(9 ), 45494554 (2001).
http://dx.doi.org/10.1063/1.1406967
21.
21. J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, and A. B. Holmes, Appl. Phys. Lett. 68(22 ), 3120 (1996).
http://dx.doi.org/10.1063/1.115797
22.
22. R. J. Chesterfield, J. C. McKeen, C. R. Newman, and C. D. Frisbie, J. Appl. Phys. 95(11 ), 6396 (2004).
http://dx.doi.org/10.1063/1.1710729
23.
23. A. Tapponnier, I. Biaggio, and P. Günter, Appl. Phys. Lett. 86(11 ), 112114 (2005).
http://dx.doi.org/10.1063/1.1883327
24.
24. X.-H. Zhang, B. Domercq, and B. Kippelen, Appl. Phys. Lett. 91(9 ), 092114 (2007).
http://dx.doi.org/10.1063/1.2778472
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/16/10.1063/1.4802487
Loading
/content/aip/journal/apl/102/16/10.1063/1.4802487
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/102/16/10.1063/1.4802487
2013-04-23
2014-10-25

Abstract

Photoresponsive organic field-effect transistors (PhotOFETs) based on palladium phthalocyanine (PdPc) and C60 were fabricated with different donor-acceptor layer sequences. Both planar heterojunction devices fabricated exhibit better performance under illumination than the single PdPc device. PhotOFETs with the structure SiO2/C60/PdPc/Au exhibit a higher photosensitivity and photoresponsivity than that with the structure SiO2/PdPc/C60/Au. The origin for this is largely the high mobility of C60 and the well-matched LUMO levels of PdPc and C60. The maximum photosensitivity of the SiO2/C60/PdPc/Au device is 8 × 103, and the photoresponsivity is approximately 28 times that of the single component PdPc device.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/102/16/1.4802487.html;jsessionid=7ri6oukjhofac.x-aip-live-03?itemId=/content/aip/journal/apl/102/16/10.1063/1.4802487&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Influence of donor-acceptor layer sequence on photoresponsive organic field-effect transistors based on palladium phthalocyanine and C60
http://aip.metastore.ingenta.com/content/aip/journal/apl/102/16/10.1063/1.4802487
10.1063/1.4802487
SEARCH_EXPAND_ITEM